Preuves de terminaison de systèmes de réécriture fondées sur les interprétations polynomiales. Une méthode basée sur le théorème de Sturm
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)
- Volume: 25, Issue: 2, page 157-169
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. A. BEN CHERIFA and P. LESCANNE, Termination of Rewriting by Polynomial Interpetretations and its Implementation, Sci. Comput. Programming, October 1987, Vol. 9 (2), pp. 137-160. Zbl0625.68036MR912043
- 2. G. COLLINS, Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition, Proceedings 2nd GI Conference on Automata and Formal Languages, Springer Verlag, Lectures Notes in Computer Science 1975. Zbl0318.02051MR403962
- 3. M. DAVIS, Y. MATIJASEVIC and J. ROBINSON. Hilbert's Tenth Problem: Positive Aspects of a Negative Solution, in F. E. BROWDER Ed., Mathematical Developments Arising from Hubert Problems, American Mathematical Society, 1976, pp. 323-378. Zbl0346.02026MR432534
- 4. N. DERSHOWITZ, Corrigendum to Termination of Rewriting, J. Symbolic Comput., 1987, Vol. 4, pp. 409-410. Zbl0637.68036MR925736
- 5. N. DERSHOWITZ, Termination of Rewriting, J. Symbolic Comput., 1987, Vol. 3 (1 et 2), pp. 69-116. Zbl0637.68035MR893186
- 6. D. KNUTH, The Art of Computer Programming, Vol. 2, Addison Wesley, Reading Massachusetts, 2nd edition, 1981. Zbl0477.65002MR633878
- 7. D. S. LANKFORD, On Proving Term Rewriting Systems are Noetherian, Technical Report, Louisiana Tech. University, Mathematics Dept., Ruston LA, 1979.
- 8. TARSKI, A Decision Method for Elementary Algebra and Geometry, University of California Press, Berkeley, 2nd edition, 1951. Zbl0044.25102MR44472