The topologies of sofic subshifts have computable Pierce invariants

Tom Head

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)

  • Volume: 25, Issue: 3, page 247-254
  • ISSN: 0988-3754

How to cite

top

Head, Tom. "The topologies of sofic subshifts have computable Pierce invariants." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.3 (1991): 247-254. <http://eudml.org/doc/92391>.

@article{Head1991,
author = {Head, Tom},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {sofic subshift; topological space; adherences of regular languages; Pierce invariant; homeomorphism},
language = {eng},
number = {3},
pages = {247-254},
publisher = {EDP-Sciences},
title = {The topologies of sofic subshifts have computable Pierce invariants},
url = {http://eudml.org/doc/92391},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Head, Tom
TI - The topologies of sofic subshifts have computable Pierce invariants
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 3
SP - 247
EP - 254
LA - eng
KW - sofic subshift; topological space; adherences of regular languages; Pierce invariant; homeomorphism
UR - http://eudml.org/doc/92391
ER -

References

top
  1. 1. F. BLANCHARD and G. HANSEL, Languages and Subshifts, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 138-146, Lectures Notes in Comput. Sci., 192, Springer-Verlag, 1985. Zbl0571.68059MR814739
  2. 2. L. BOASSON and M. NIVAT, Adherences of Languages, J. Comput. Syst. Sci., 1980, 20, pp. 285-309. Zbl0471.68052MR584863
  3. 3. T. HEAD, The Adherences of Languages as Topological Spaces, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 147-163, Lecture Notes in Comput. Sci., 192, Springer-Verlag 1985. Zbl0571.68057MR814740
  4. 4. T. HEAD, The Topological Structure of Adherences of Regular Languages, RAIRO, Inform. Théor. Appl., 1986, 20, pp. 31-41. Zbl0608.68066MR849963
  5. 5. T. HEAD, The Topological Structure of the Space of Unending Paths of a Graph, Congr. Numer., 1987, 60, pp. 131-140. Zbl0645.05037MR945225
  6. 6. R. S. PIERCE, Existence and Uniqueness Theorems for Extensions of Zero-Dimensional Metric Spaces, Trans. Amer. Math. Soc., 1970, 148, pp. 1-21. Zbl0194.54801MR254804
  7. 7. R. S. PIERCE, Compact Zero-Dimensional Metric Spaces of Finite Type, Mem. Amer. Math. Soc, No. 130, Providence, Rhode Island, 1972. Zbl0253.54028MR357268
  8. 8. B. WEISS, Subshifts of Finite Type and Sofic Systems, Monatsh. Math., 1973, 77, pp. 462-474. Zbl0285.28021MR340556

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.