The topologies of sofic subshifts have computable Pierce invariants
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)
- Volume: 25, Issue: 3, page 247-254
- ISSN: 0988-3754
Access Full Article
topHow to cite
topHead, Tom. "The topologies of sofic subshifts have computable Pierce invariants." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.3 (1991): 247-254. <http://eudml.org/doc/92391>.
@article{Head1991,
author = {Head, Tom},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {sofic subshift; topological space; adherences of regular languages; Pierce invariant; homeomorphism},
language = {eng},
number = {3},
pages = {247-254},
publisher = {EDP-Sciences},
title = {The topologies of sofic subshifts have computable Pierce invariants},
url = {http://eudml.org/doc/92391},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Head, Tom
TI - The topologies of sofic subshifts have computable Pierce invariants
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 3
SP - 247
EP - 254
LA - eng
KW - sofic subshift; topological space; adherences of regular languages; Pierce invariant; homeomorphism
UR - http://eudml.org/doc/92391
ER -
References
top- 1. F. BLANCHARD and G. HANSEL, Languages and Subshifts, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 138-146, Lectures Notes in Comput. Sci., 192, Springer-Verlag, 1985. Zbl0571.68059MR814739
- 2. L. BOASSON and M. NIVAT, Adherences of Languages, J. Comput. Syst. Sci., 1980, 20, pp. 285-309. Zbl0471.68052MR584863
- 3. T. HEAD, The Adherences of Languages as Topological Spaces, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 147-163, Lecture Notes in Comput. Sci., 192, Springer-Verlag 1985. Zbl0571.68057MR814740
- 4. T. HEAD, The Topological Structure of Adherences of Regular Languages, RAIRO, Inform. Théor. Appl., 1986, 20, pp. 31-41. Zbl0608.68066MR849963
- 5. T. HEAD, The Topological Structure of the Space of Unending Paths of a Graph, Congr. Numer., 1987, 60, pp. 131-140. Zbl0645.05037MR945225
- 6. R. S. PIERCE, Existence and Uniqueness Theorems for Extensions of Zero-Dimensional Metric Spaces, Trans. Amer. Math. Soc., 1970, 148, pp. 1-21. Zbl0194.54801MR254804
- 7. R. S. PIERCE, Compact Zero-Dimensional Metric Spaces of Finite Type, Mem. Amer. Math. Soc, No. 130, Providence, Rhode Island, 1972. Zbl0253.54028MR357268
- 8. B. WEISS, Subshifts of Finite Type and Sofic Systems, Monatsh. Math., 1973, 77, pp. 462-474. Zbl0285.28021MR340556
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.