Introduction aux polyèdres en combinatoire d'après E. Ehrhart et R. Stanley

M. Delest; J. M. Fedou

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)

  • Volume: 25, Issue: 3, page 273-292
  • ISSN: 0988-3754

How to cite

top

Delest, M., and Fedou, J. M.. "Introduction aux polyèdres en combinatoire d'après E. Ehrhart et R. Stanley." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.3 (1991): 273-292. <http://eudml.org/doc/92393>.

@article{Delest1991,
author = {Delest, M., Fedou, J. M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {principal definitions; integer points in a polytope; Dyck path},
language = {fre},
number = {3},
pages = {273-292},
publisher = {EDP-Sciences},
title = {Introduction aux polyèdres en combinatoire d'après E. Ehrhart et R. Stanley},
url = {http://eudml.org/doc/92393},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Delest, M.
AU - Fedou, J. M.
TI - Introduction aux polyèdres en combinatoire d'après E. Ehrhart et R. Stanley
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 3
SP - 273
EP - 292
LA - fre
KW - principal definitions; integer points in a polytope; Dyck path
UR - http://eudml.org/doc/92393
ER -

References

top
  1. 1. M. P. DELEST, Utilisation des langages algébriques et du calcul formel pour le codage et l'énumération, des polyominos, Thèse d'état, Bordeaux, 1987. 
  2. 2. M. P. DELEST et J. M. FEDOU, q-énumérations des polyominos et fonctions de Bessel, preprint, Université de Bordeaux I, février 1989. MR1035033
  3. 3. M. P. DELEST et G. VIENNOT, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci., 1984, 34, p. 169-206. Zbl0985.68516MR774044
  4. 4. E. EHRHART, Polynômes arthmétiques et méthode des polyèdres en Combinatoire, International series of numerical Math., 35, Birkhaüser, Basel, 1977. Zbl0337.10019MR432556
  5. 5. A. GARSIA, Communication privée sur les polyèdres, septembre 1988. 
  6. 6. I. G. MACDONALD, The volume of a lattice polyhedron, Proc. Cambridge Philos. Soc., 1963, 59, p. 719-726. Zbl0126.18103MR154188
  7. 7. P. MCMULLEN, Valuations and Euler types relations for certain classes of convex polytopes, Proc. London Math. Soc., 1977, 35, p. 113-135. Zbl0353.52001MR448239
  8. 8. R. P. STANLEY, Combinatorial reciprocity theorems, Adv. in Math., 1974, 14, p. 194-253. Zbl0294.05006MR411982
  9. 9. R. P. STANLEY, Decomposition of rational convex polytopes, in Combinatorial Mathematics, optimal designs and their applications, J. SRIVASTAVA éd., Ann. Discrete Math., 1980, 6, p. 333-342. Zbl0812.52012MR593545
  10. 10. R. P. STANLEY, Enumerative Combinatorics, 1, Wadsworth & Brooks/Cole, Monterey, California, 1986. Zbl0608.05001
  11. 11. R. P. STANLEY, Notes de conférences données à U.C.S.D., 1979 (notes prises par X. G. Viennot) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.