Rebootable and suffix-closed ω -power languages

B. Le Saëc; I. Litovsky

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1992)

  • Volume: 26, Issue: 1, page 45-58
  • ISSN: 0988-3754

How to cite

top

Le Saëc, B., and Litovsky, I.. "Rebootable and suffix-closed $\omega $-power languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 26.1 (1992): 45-58. <http://eudml.org/doc/92408>.

@article{LeSaëc1992,
author = {Le Saëc, B., Litovsky, I.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {-languages; -generators},
language = {eng},
number = {1},
pages = {45-58},
publisher = {EDP-Sciences},
title = {Rebootable and suffix-closed $\omega $-power languages},
url = {http://eudml.org/doc/92408},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Le Saëc, B.
AU - Litovsky, I.
TI - Rebootable and suffix-closed $\omega $-power languages
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 1
SP - 45
EP - 58
LA - eng
KW - -languages; -generators
UR - http://eudml.org/doc/92408
ER -

References

top
  1. 1. A. ARNOLD, A Syntactic Congruence for Rational ω-languages, Theoret Comput. Sci., 1985, 39, pp. 333-335. Zbl0578.68057MR821211
  2. 2. A. ARNOLD and M. NIVAT, Comportements de processus, Rapport interne, L.I.T.P., 1982, pp. 82-12. 
  3. 3. J. BERTSEL and D. PERRIN, Theory of Codes, Academic Press, New York, 1985. Zbl0587.68066MR797069
  4. 4. L. BOASSON and M. NIVAT, Adherences of Languages, J. Comput. System Sci., 1980, 20, pp. 285-309. Zbl0471.68052MR584863
  5. 5. J. R. BÜCHI, On Decision Method in Restricted Second-Order Arithmetics, Proc. Congr. Logic, Method. and Phulos. Sci., Stanford Univ. Press, 1962, p. 1-11. Zbl0147.25103MR183636
  6. 6. S. EILENBERG, Automata, Languages and Machines, A, Academic Press, New York, 1974. MR530382
  7. 7. H. JÜRGENSEN and G. THIERRIN, On ω-languages Whose Syntactic Monoid is Trivial, J. Comput. Inform. Sci., 1983, 12, pp. 359-365. Zbl0545.68072MR741785
  8. 8. L. H. LANDWEBER, Decision Problems for ω-Automata, Math. Syst. Theory, 1969, 3, pp. 376-384. Zbl0182.02402MR260595
  9. 9. M. LATTEUX and E. TIMMERAN, Finitely Generated ω-Languages, Inform Process. Lett., 1986, 23, pp. 171-175. Zbl0627.68059MR871375
  10. 10. R. LINDER and L. STAIGER, Algebraische Codierungstheorie-Theorie der sequentiellen Codierungen, Akademie-Verlag, Berlin, 1977. Zbl0363.94016MR469495
  11. 11. I. LITOVSKY, Générateurs des langages rationnels de mots infinis, Thèse, Univ. Lille-I, 1988. 
  12. 12. I. LITOVSKY, and E. TIMMERMAN, On Generators of Rational ω-Power Languages, Theoret. Comput. Sci., 1987, 53, pp. 187-200. Zbl0632.68080MR918089
  13. 13. R. MACNAUGHTON, Testing and Generating Infinite Sequences by a Finite Automaton, Inform. Control, 1966, 9, pp. 521-530. Zbl0212.33902MR213241
  14. 14. L. STAIGER, A Note on Connected ω-languages, Elektron. Inform. Kybernetik, 1980, 16, 5/6, pp. 245-251. Zbl0452.68085MR601279
  15. 15. L. STAIGER, Finite State ω-Languages, J. Comput. System Sci., 1983, 27, pp. 434-448. Zbl0541.68052MR727390
  16. 16. L. SAIGER, On Infinitary Finite Length Codes, Theore. Inform. Appli. 1986, 20, 4, pp. 483-494. Zbl0628.68056MR880849
  17. 17. L. STAIGER, Research in the Theory of ω-Languages, Elektron. Inform. Kybernetik, 1987, 23, 8/9, pp. 415-439. Zbl0637.68095MR923334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.