Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères

M. Bousquet-Mélou

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1992)

  • Volume: 26, Issue: 3, page 205-219
  • ISSN: 0988-3754

How to cite

top

Bousquet-Mélou, M.. "Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 26.3 (1992): 205-219. <http://eudml.org/doc/92415>.

@article{Bousquet1992,
author = {Bousquet-Mélou, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {bilateral Dycle language; methodology; algebraic language},
language = {fre},
number = {3},
pages = {205-219},
publisher = {EDP-Sciences},
title = {Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères},
url = {http://eudml.org/doc/92415},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Bousquet-Mélou, M.
TI - Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 3
SP - 205
EP - 219
LA - fre
KW - bilateral Dycle language; methodology; algebraic language
UR - http://eudml.org/doc/92415
ER -

References

top
  1. [Ba l] R. BAXTER, Hard hexagons: exact solution, J. Phys. A: Math. Gen., 1980, 13, L 61-L 70. MR560533
  2. [Ba 2] R. BAXTER, Exactly solved models in statistical mechanics, Academic Press, New-York, 1982. Zbl0538.60093MR690578
  3. [Bo-Vi] M. BOUSQUET-MÉLOU et X. G. VIENNOT, Empilements de segments et q-énumération de polyominos convexes dirigés, à paraître dans J. Comb. Th. Series A. Zbl0753.05023
  4. [De-Du] M. P. DELEST et S. DULUCQ, Enumeration of directed column-convex animals with given perimeter and area, Rapport n° 86-15, Université Bordeaux-I, soumis à publication. 
  5. [De-Vi] M. P. DELEST et X. G. VIENNOT, Algebraic languages and polyominoes enumeration, Theor. Comp. Sci., 1984, 34, p. 169-206, North-Holland. Zbl0985.68516
  6. [De-Na-Va] B. DERRIDA, J. P. NADAL et J. VANNIMENUS, Directed lattices animals in 2 dimensions: numerical and exact relults, J. Phys, 1982, 43, p. 1561. 
  7. [Dh1] D. DHAR, Equivalence of the two-dimensional directede animal problem to Baxter hard-square lattice-gas model, Phys. Rev. Lett., 1982, 49, p. 959-962. 
  8. [Dh 2] D. DHAR, Exact solution of a directed-site animals enumeration in 3 dimensions, Phys. Rev. Lett., 1983, 59, p. 853-856. 
  9. [Fe] J. M. FEDOU, Exact formulas for fully compact animals, Rapport LaBRI n° 89-06, Université Bordeaux-I. 
  10. [Ga] M. GARDNER, Mathematical games, Scientific American, 1958, sept. 182-192, nov. 136-142. 
  11. [Go] S. GOLOMB, Polyominoes, Scribner, New York, 1965. 
  12. [Go-Vi] D. GOUYOU-BEAUCHAMPS et X. G. VIENNOT, Equivalence of the two dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math., 1988, 9, p. 334-357. Zbl0727.05036
  13. [Ha-Na] V. HAKIM et J. P. NADAL, Exact resuit for 2 D directed lattice animais on a strip of finite width, J. Phys. A: Math. Gen., 1983, 16, L 213-L 218. 
  14. [Kl-Ri] D. A. KLARNER et R. L. RIVEST, A procedure for improving the upper bound for the number of n-ominoes, Can. J. Math, 1973, 25, p. 585-602. Zbl0261.05113MR323587
  15. [Li-Ch] K. Y. LIN et S. J. CHANG, Rigourous results for the number of convex polygons on the square and honeycomb lattices, J. Phys. A: Math. Gen., 1988, 21, p. 2635-2642. MR953200
  16. [Pe 1] J. G. PENAUD, Une nouvelle bijection pour les animaux dirigés, Rapport LaBRI n° 89-45, Université Bordeaux-I, Actes du 22e Séminaire Lotharingien de Combinatoire, Hesselberg, 1989, p. 93-130. 
  17. [Pe 2] J. G. PENAUD, Animaux dirigés diagonalement convexes et arbres ternaires, Rapport LaBRI n° 90-62, Université Bordeaux-I. 
  18. [Pe 3] J. G. PENAUD, Arbres et Animaux, Mémoire d'habilitation à diriger les recherches, Université Bordeaux-I, mai 1990. 
  19. [Pr-Fo] V. PRIVMAN et G. FORGACS, Exact solution of the partially directed compact lattice animal model, J. Phys. A: Math. Gen., 1987, 20, p. 543-547. MR893296
  20. [Pr-Sv] V. PRIVMAN et N. M. SVRAKIC, Exact generating fucntion for fully directed compact lattice animals, Phys. Rev. Lett., 1988, 60, n° 12, p. 1107-1109. MR932171
  21. [Vi] X. G. VIENNOT, Problèmes combinatoires posés par la physique statistique, Séminaire Bourbaki, n° 626, 36e année, in Astérisque, n° 121-122, 1985, p. 225-246, Soc. Math. France. Zbl0563.60095MR768962

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.