Enumerating Davenport-Schinzel sequences
D. Gardy; D. Gouyou-Beauchamps
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1992)
- Volume: 26, Issue: 5, page 387-402
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. P. AGARWAL, Intersection and decomposition algorithms for arrangements of curves in the plane. Ph. D., New York University, Courant Institute of Mathematical Sciences, 1989. MR2638381
- 2. P. AGARWAL, M. SHARIR and P. SHOR, Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. J. Combinat. Theory Ser. A, 52, (2) : 228-274, 1989. Zbl0697.05003MR1022320
- 3. P. ALEVIZOS, J. D. BOISSONNAT and F. PREPARATA, An optimal algorithm for the boundary of a cell in a union of rays. Algorithmica, 5, (4) : 573-590, 1990. Zbl0697.68030MR1072808
- 4. R. COLE and M. SHARIR, Visibility of a polyhedral surface from a point. Technical Report 266, Comp. Science Dept., Courant Institute of Mathematical Sciences, New York University, December 1986.
- 5. H. DAVENPORT, A combinatorial problem connected with differential equations II. Acta Arithmetica, XVII : 363-372, 1971. Zbl0216.30204MR285401
- 6. H. DAVENPORT and A. SCHINZEL, A combinatorial problem connected with differential equations. Amer. J. Math., 87 : 684-694, 1965. Zbl0132.00601MR190010
- 7. P. FLAJOLET, Analytic models and ambiguity of context-free languages. Theoretical Computer Science, 49, (2) : 283-310, 1987. Zbl0612.68069MR909335
- 8. P. FLAJOLET and A. ODLYZKO, Singularity analysis of generating fonctions. SIAM Journal on Discrete Mathematics, 3, (2) : 216-240, 1990. Zbl0712.05004MR1039294
- 9. D. GOUYOU-BEAUCHAMPS and B. VAUQUELIN, Deux propriétés combinatoires des nombres of Schröder. Informatique Théorique et Applications, 22, (3) : 361-388, 1988. Zbl0669.05002MR963597
- 10. S. HART and M. SHARIR, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica, 6 : 151-177, 1986. Zbl0636.05003MR875839
- 11. K. KEDEM and M. SHARIR, An efficient algorithm for planning collision-free translational motion of a convex polygonal object in 2-dimensional space amidst polygonal obstacles. In ACM Symp. on Computational Geometry, pp. 75-8, 1985.
- 12. P. KOMJÁTH, A simplified construction of nonlinear Davenport-Schinzel sequences. J. Combin. Theory Ser. A, 49, (2) : 262-267, 1988. Zbl0673.05001MR964387
- 13. D. LEVEN and M. SHARIR, On the number of critical free contacts of a convex polygonal object moving in 2-dimensional polygonal space. Discrete Comp. Geom., 2 : 255-270, 1987. Zbl0616.52009MR892172
- 14. J. PACH and M. SHARIR, The upper envelope of a piecewise linear function and the boundary of a region enclosed by convex plates: Combinatorial Analysis. Discrete Comp. Geom., 4, (4) : 291-309, 1989. Zbl0734.05054MR996764
- 15. R. POLLACK, M. SHARIR and S. SIFRONY, Separating two simple polygons by a sequence of translations. Discrete Comp. Geom., 3 : 123-136, 1988. Zbl0646.68052MR920698
- 16. M. SHARIR, Almost linear upper bounds on the length of general Davenport-Schinzel sequences. Combinatorica, 7, (1) : 131-143, 1987. Zbl0636.05004MR905160
- 17. M. SHARIR, Davenport-Schinzel sequences and their geometric applications, chapter Theoretical Foundations of Computer Graphics and CAD, pp. 253-278. Springer-Verlag, NATO ASI Series, Vol. F-40, R.A. Earnshaw edition, 1988. MR944720
- 18. M. SHARIR, R. COLE, K. KEDEM, D. LEVEN, R. POLLACK and S. SIFRONY, Geometric applications of Davenport-Schinzel sequences. In 27th Symposium on Foundations of Computer Science, pp.77-86, Toronto (Canada), 1986.
- 19. M. SORIA, Méthodes d'analyse pour les constructions combinatoires et les algorithmes. Thèse d'État, L.R.I, Université Paris-Sud (Orsay), Juillet 1990.
- 20. E. SZEMERÉDI, On a problem by Davenport and Schinzel. Acta Arithmetica XXV: 213-224, 1974. Zbl0291.05003MR335463
- 21. A. WIERNIK, Planar realizations of nonlinear Davenport-Schinzel sequences by segments. In 27th Symposium on Foundations of Computer Science, pp.97-106, Toronto (Canada), 1986.