Sur le produit avec compteur modulo un nombre premier

Pierre Péladeau

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1992)

  • Volume: 26, Issue: 6, page 553-564
  • ISSN: 0988-3754

How to cite

top

Péladeau, Pierre. "Sur le produit avec compteur modulo un nombre premier." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 26.6 (1992): 553-564. <http://eudml.org/doc/92433>.

@article{Péladeau1992,
author = {Péladeau, Pierre},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {counting modulo a prime number},
language = {fre},
number = {6},
pages = {553-564},
publisher = {EDP-Sciences},
title = {Sur le produit avec compteur modulo un nombre premier},
url = {http://eudml.org/doc/92433},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Péladeau, Pierre
TI - Sur le produit avec compteur modulo un nombre premier
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 6
SP - 553
EP - 564
LA - fre
KW - counting modulo a prime number
UR - http://eudml.org/doc/92433
ER -

References

top
  1. 1. J. A. BRZOZOWSKI et R. KNAST, The Dot-Depth Hierarchy of Star-Free Languages is Infinite, J. Computer and System Sci., 1978, 16, p. 35-55. Zbl0368.68074MR471451
  2. 2. S. EILENBERG, Automata, Languages and Machines, Academic Press, 1976, B. Zbl0359.94067
  3. 3. E. LUCA, La Théorie des nombres, tome 1, 1961. 
  4. 4. P. PÉLADEAU, Classes de circuits booléens et variétés de langages, Thèse de Doctorat, Université Paris-VI, 1990. 
  5. 5. J. E. PIN, Variétés de langage formels, Masson, Paris, 1984. Zbl0636.68093MR752695
  6. 6. J.-E. PIN, Topologies for the Free Monoid, Rapport LITP 88.17, J. of Algebra (à paraître). Zbl0739.20032
  7. 7. M. P. SCHÜTZENBERGER, On Finite Monoids Having Only Trivial Subgroups, Inform. and Control, 1965, 8, p. 190-194. Zbl0131.02001MR176883
  8. 8. R. SMOLENSKY, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity, Proc. 19th ACM STOC, 1987, p. 77-82. 
  9. 9. H. STRAUBING, Families of Recognizable Sets Corresponding to Certain Varieties of Finite Monoids, J. Pure Appl. Algebra, 1979, 15, p. 319-327. Zbl0414.20056MR537504
  10. 10. H. STRAUBING, A Generalization of the Schützenberger Product of Finite Monoids, Theoret. Comput. Sci., 1981, 13, p. 137-150. Zbl0456.20048MR594057
  11. 11. H. STRAUBING, D. THÉRIEN and W. THOMAS, Regular Languages Defined with Generalized Quantifiers, Automata, Languages and Programming; Proc. 15th ICALP, Springer, Lectures Notes in Comput. Sci., 1988. Zbl0658.68098MR1023662
  12. 12. D. THÉRIEN, Classification of Regular Languages by Congruences, Ph. D. Thesis, Univ. of Waterloo, 1980. 
  13. 13. D. THÉRIEN, Classification of Finite Monoids: the Language Approach, Theoret. Comput. Sci., 1981, 14, p. 195-208. Zbl0471.20055MR614416
  14. 14. P. WEIL, Products of Languages with Counter, Theoret. Comput. Sci., 1990, 76, p. 251-260. Zbl0704.68071MR1079529
  15. 15. P. WEIL, Closure of Varieties of Languages Under Products with Counter, Rapport LITP, p. 89-129. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.