On languages satisfying “interchange Lemma”

Victor Mitrana

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)

  • Volume: 27, Issue: 1, page 71-79
  • ISSN: 0988-3754

How to cite

top

Mitrana, Victor. "On languages satisfying “interchange Lemma”." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.1 (1993): 71-79. <http://eudml.org/doc/92439>.

@article{Mitrana1993,
author = {Mitrana, Victor},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {closure properties; iteration conditions},
language = {eng},
number = {1},
pages = {71-79},
publisher = {EDP-Sciences},
title = {On languages satisfying “interchange Lemma”},
url = {http://eudml.org/doc/92439},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Mitrana, Victor
TI - On languages satisfying “interchange Lemma”
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 1
SP - 71
EP - 79
LA - eng
KW - closure properties; iteration conditions
UR - http://eudml.org/doc/92439
ER -

References

top
  1. 1. J. M. AUTEBERT and L. BOASSON, Generators of Cones and Cylinders, Formal Languages Theory: Perspectives and Open Problems, R. V. BOOK Ed., Acad. Press, 1980, pp. 49-88. 
  2. 2. J. BERSTEL, Sur les mots sans carré définis par un morphisme, Lecture Notes in Comput Sci., 1979, 71, pp. 16-25. Zbl0425.20046MR573232
  3. 3. L. BOASSON and S. HORVATH, On language satisfying Ogden's lemma, R.A.I.R.O. Inform. Theor. Appl., 1978, 12, pp. 193-199. Zbl0387.68054MR510636
  4. 4. J. DASSOW and Gh. PAUN, Regulated rewriting in formal language theory, Akademie-Verlag, Berlin, 1989. Zbl0697.68067MR1067543
  5. 5. S. A. GREIBACH, A note on undecidable properties of formal languages, Math. Syst. Theory, 1968, 2, 1, pp. 1-6. Zbl0157.01902MR225609
  6. 6. S. MARCUS, Algebraic linguistics. Analytical models, New York, London, Academic Press, 1967. Zbl0174.02402MR225610
  7. 7. W. OGDEN, A helpful result for proving inherent ambiquity, Math. Syst. Theory, 1968, 2, pp. 191-197. Zbl0175.27802MR233645
  8. 8. W. OGDEN, R. ROSS and K. WINKLEMANN, An "interchange lemma" for context-free languages, S.I.A.M. J. Comput., 1985, 14, pp. 410-415. Zbl0601.68051MR784746
  9. 9. S. SOKOLOWSKI, A method for proving programming language non context-free, Inf. Proc. Lett., 1978, 7, pp. 151-153. Zbl0384.68071MR475012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.