On languages satisfying “interchange Lemma”
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1993)
- Volume: 27, Issue: 1, page 71-79
- ISSN: 0988-3754
Access Full Article
topHow to cite
topMitrana, Victor. "On languages satisfying “interchange Lemma”." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 27.1 (1993): 71-79. <http://eudml.org/doc/92439>.
@article{Mitrana1993,
author = {Mitrana, Victor},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {closure properties; iteration conditions},
language = {eng},
number = {1},
pages = {71-79},
publisher = {EDP-Sciences},
title = {On languages satisfying “interchange Lemma”},
url = {http://eudml.org/doc/92439},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Mitrana, Victor
TI - On languages satisfying “interchange Lemma”
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1993
PB - EDP-Sciences
VL - 27
IS - 1
SP - 71
EP - 79
LA - eng
KW - closure properties; iteration conditions
UR - http://eudml.org/doc/92439
ER -
References
top- 1. J. M. AUTEBERT and L. BOASSON, Generators of Cones and Cylinders, Formal Languages Theory: Perspectives and Open Problems, R. V. BOOK Ed., Acad. Press, 1980, pp. 49-88.
- 2. J. BERSTEL, Sur les mots sans carré définis par un morphisme, Lecture Notes in Comput Sci., 1979, 71, pp. 16-25. Zbl0425.20046MR573232
- 3. L. BOASSON and S. HORVATH, On language satisfying Ogden's lemma, R.A.I.R.O. Inform. Theor. Appl., 1978, 12, pp. 193-199. Zbl0387.68054MR510636
- 4. J. DASSOW and Gh. PAUN, Regulated rewriting in formal language theory, Akademie-Verlag, Berlin, 1989. Zbl0697.68067MR1067543
- 5. S. A. GREIBACH, A note on undecidable properties of formal languages, Math. Syst. Theory, 1968, 2, 1, pp. 1-6. Zbl0157.01902MR225609
- 6. S. MARCUS, Algebraic linguistics. Analytical models, New York, London, Academic Press, 1967. Zbl0174.02402MR225610
- 7. W. OGDEN, A helpful result for proving inherent ambiquity, Math. Syst. Theory, 1968, 2, pp. 191-197. Zbl0175.27802MR233645
- 8. W. OGDEN, R. ROSS and K. WINKLEMANN, An "interchange lemma" for context-free languages, S.I.A.M. J. Comput., 1985, 14, pp. 410-415. Zbl0601.68051MR784746
- 9. S. SOKOLOWSKI, A method for proving programming language non context-free, Inf. Proc. Lett., 1978, 7, pp. 151-153. Zbl0384.68071MR475012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.