Algebraic and topological theory of languages

J. Rhodes; P. Weil

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)

  • Volume: 29, Issue: 1, page 1-44
  • ISSN: 0988-3754

How to cite

top

Rhodes, J., and Weil, P.. "Algebraic and topological theory of languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.1 (1995): 1-44. <http://eudml.org/doc/92495>.

@article{Rhodes1995,
author = {Rhodes, J., Weil, P.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {torsion language},
language = {eng},
number = {1},
pages = {1-44},
publisher = {EDP-Sciences},
title = {Algebraic and topological theory of languages},
url = {http://eudml.org/doc/92495},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Rhodes, J.
AU - Weil, P.
TI - Algebraic and topological theory of languages
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 1
SP - 1
EP - 44
LA - eng
KW - torsion language
UR - http://eudml.org/doc/92495
ER -

References

top
  1. 1. J.-C. BIRGET and J. RHODES, Almost finite expansions, Journ. Pure Appl. Alg., 1984, 32, pp. 239-287. Zbl0546.20055MR745358
  2. 2. A. DE LUCA and S. VARRICCHIO, On non-counting regular classes, in Automata, languages and programming (M.S. Patersen, ed.), Lecture Notes in Computer Science, 1990, 443, Springer, pp. 74-87. Zbl0765.68074
  3. 3. A. DE LUCA and S. VARRICCHIO, On non-counting regular classes, Theoret. Comp. Science, 1992, 100, pp. 67-104. Zbl0780.68084MR1171435
  4. 4. S. EILENBERG, Automata, languages and machines, vol. B, Academic Press, New York, 1976. Zbl0359.94067MR530383
  5. 5. R. GRIGORCHUK, Degrees of growth of finitely generated groups, and the theory of invariant means, Math. USSR Izvestyia, 1985, 25, pp. 259-300. (English translation AMS.) Zbl0583.20023MR764305
  6. 6. K. HENCKELL, S. LAZARUS and J. RHODES, Prime decomposition theorem for arbitrary semigroups: general holonomy decomposition and synthesis theorem, Journ. Pure Appl. Alg., 1988, 55, pp. 127-172. Zbl0679.20056MR968572
  7. 7. I. HERSTEIN, Noncommutative rings, Carus Mathematical Monographs 15, Mathematical Association of America, 1968. Zbl0874.16001MR1449137
  8. 8. J. HOWIE, An introduction to semigroup theory, London, Academic Press, 1976. Zbl0355.20056MR466355
  9. 9. S. KLEENE, Representation of events in nerve nets and finite automata, in Automata Studies (Shannon and McCarthy eds), Princeton, Princeton University Press, 1954, pp. 3-51. MR77478
  10. 10. G. LALLEMENT, Semigroups and combinatorial applications, New York, Wiley, 1979. Zbl0421.20025MR530552
  11. 11. J. MCCAMMOND, The solution to the word problem for the relatively free semigroups satisfying ta = ta+b with a ≥ 6, Intern. Journ. Algebra Comput. 1, 1991, pp. 1-32. Zbl0732.20034MR1112297
  12. 12. J. L. MENICKE, Burnside groups, Lecture Notes in Mathematics 806, 1980, Springer. Zbl0424.00008
  13. 13. E. F. MOORE, Sequential machines, Addison-Wesley, 1964, Reading, Mass. Zbl0147.24107
  14. 14. A. PEREIRA DO LAGO, On the Burnside semigroups xn = xn+m, LATIN 92 (I. Simon ed.), Lecture Notes in Computer Sciences, 583, springer. 
  15. 15. J.-E. PIN, Concatenation hierarchies and decidability results, in Combinatorics on words: progress and perspectives (L. Cummings, ed.), New York, Academic Press, 1983, pp. 195-228. Zbl0561.68055MR910136
  16. 16. J.-E. PIN, Variétés de langages formels, Paris Masson, 1984, (English translation: Varieties of formal languages, Plenum (New York, 1986. Zbl0636.68093MR752695
  17. 17. J. RHODES, Infinite iteration of matrix semigroups, I, J. Algebra, 1986, 98, pp. 422-451. Zbl0584.20053MR826135
  18. 18. J. RHODES, Infinite iteration of matrix semigroups, II, J. Algebra, 1986, 100, pp. 25-137. Zbl0626.20050MR839575
  19. 19. M.-P. SCHÜTZENBERGER, On finite monoids having only trivial subgroups, Information and Control, 1965, 8, pp. 190-194. Zbl0131.02001MR176883
  20. 20. H. STRAUBING, Families of recognizable sets corresponding to certain varieties of finite monoids, Journ. Pure Appl. Alg., 1979, 15, pp. 305-318. Zbl0414.20056MR537503
  21. 21. H. STRAUBING, Relational morphisms and operations on recognizable sets, RAIRO Inform. Théor., 1981, 15, pp. 149-159. Zbl0463.20049MR618452
  22. 22. P. WEIL, Products of languages with counter, Theoret. Comp. Science, 1990, 76, pp. 251-260. Zbl0704.68071MR1079529
  23. 23. P. WEIL, Closure of varieties of languages under products with counter, Journ. Comp. System and Sciences, 1992, 45, pp. 316-339. Zbl0766.20023MR1193376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.