Unavoidable languages, cuts and innocent sets of words

L. Rosaz

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)

  • Volume: 29, Issue: 5, page 339-382
  • ISSN: 0988-3754

How to cite

top

Rosaz, L.. "Unavoidable languages, cuts and innocent sets of words." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.5 (1995): 339-382. <http://eudml.org/doc/92513>.

@article{Rosaz1995,
author = {Rosaz, L.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {unavoidable languages},
language = {eng},
number = {5},
pages = {339-382},
publisher = {EDP-Sciences},
title = {Unavoidable languages, cuts and innocent sets of words},
url = {http://eudml.org/doc/92513},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Rosaz, L.
TI - Unavoidable languages, cuts and innocent sets of words
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 5
SP - 339
EP - 382
LA - eng
KW - unavoidable languages
UR - http://eudml.org/doc/92513
ER -

References

top
  1. 1. A. V. AHO and M. J. CORASICK, Efficient string machines, an aid to bibliographic research, Comm. ACM, 1975, 18 (6), pp. 333-340. Zbl0301.68048MR371172
  2. 2. D. R. BEAN, A. EHRENFEUCHT and G. F. MCNULTY, Avoidable patterns in strings of symbols, Pacific J. Math., 1979, 85, 2, pp. 261-294. Zbl0428.05001MR574919
  3. 3. W. BUCHER, A. EHRENFEUCHT and D. HAUSSLER, On Total Regulators Generated by Derivation Relations, Proc. of 12th International Colloquium on Automata, Languages and Programming; Lectures notes in Computer Science, 194, Springer-Verlag, 1985, pp, 71-79. Zbl0571.68056MR819242
  4. 4. C. CHOFFRUT and K. CULIK, On extendibility of unavoidable sets, Discrete Applied Mathematics, 1984, pp. 125-137. Zbl0629.68080MR761597
  5. 5. M. CROCHEMORE, M. LEREST and P. WENDER, An optimal test on finite unavoidable sets of words, Information Processing Letter, 1983, 16, pp. 179-180. Zbl0506.68057MR707587
  6. 6. A. EHRENFEUCH, D. HAUSSLER and G. ROZENBERG, On regularity of context-free languages, Theor Comp. Sci., 1983, 27, pp. 311-332. Zbl0553.68044MR731068
  7. 7. N. J. FINE and H. S. WILF, Uniqueness Theorem for Periodic functions, Proc. Am. Math. Soc., 1965, 16, pp. 109-114. Zbl0131.30203MR174934
  8. 8. G. HIGMAN, Ordering by divisibility in abstract algebras, Proc. London Math. Soc., 1952, 2, pp. 326-336. Zbl0047.03402MR49867
  9. 9. KRUSKAL, Well-quasi ordering, The Tree Theorem, and Vazsonyi's conjecture, Trans. Amer. Math. Soc., 1960, 95, pp. 210-225. Zbl0158.27002MR111704
  10. 10. KRUSKAL, The theory of well-quasi ordering: a frequently discovered concept, J. Comb. Theory Ser., 1972, A 13 (3), pp. 297-305. Zbl0244.06002MR306057
  11. 11. G. KUCHEROV and M. RUSINOVITCH, On Ground-Reducibility Problem for Word Rewriting Systems with Variables, In E. DEATON and R. WILKERSON, eds., Proceedings 1994 ACM/SIGAPP Symposium on Applied Computing, Phoenix, March 1994, ACM-Press. 
  12. 12. G. KUCHEROV and M. RUSINOVITCH, Complexity of Testing Ground Reducibility for Linear Word Rewriting Systems with Variables, preprint. 
  13. 13. LOTHAIRE, Combinatorics on words, chapter 1, Add.-Wesley, by D. PERRIN, 1983. Zbl0514.20045MR675953
  14. 14. ld, chapter 6, by J. SAKAROVITCH. 
  15. 15. E. OCHMANSKI, Inevitability in concurrent Systems, IPL 25, 1987, pp. 221-225. Zbl0653.68011MR896138
  16. 16. L. PUEL, Using unavoidable sets of trees to generalize Kruskal's theorem, J.S.C., 1989, Vol. 8, No. 4, pp. 335-382. Zbl0676.06003MR1021611
  17. 17. L. ROSAZ, Inventories of unavoidable languages and the word-extension conjecture, to appear in Theoretical Computer Science. Zbl0902.68099MR1625403
  18. 18. L. ROSAZ, Unavoidable languages, Mémoire de thèse, LITP Report. 
  19. 19. M. P. SCHUTZENBERGER, On the synchronizing properties of certain prefix codes, Information and Control, 1964, 7, pp. 23-36. Zbl0122.15004MR199049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.