Unavoidable languages, cuts and innocent sets of words
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)
- Volume: 29, Issue: 5, page 339-382
- ISSN: 0988-3754
Access Full Article
topHow to cite
topRosaz, L.. "Unavoidable languages, cuts and innocent sets of words." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.5 (1995): 339-382. <http://eudml.org/doc/92513>.
@article{Rosaz1995,
author = {Rosaz, L.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {unavoidable languages},
language = {eng},
number = {5},
pages = {339-382},
publisher = {EDP-Sciences},
title = {Unavoidable languages, cuts and innocent sets of words},
url = {http://eudml.org/doc/92513},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Rosaz, L.
TI - Unavoidable languages, cuts and innocent sets of words
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 5
SP - 339
EP - 382
LA - eng
KW - unavoidable languages
UR - http://eudml.org/doc/92513
ER -
References
top- 1. A. V. AHO and M. J. CORASICK, Efficient string machines, an aid to bibliographic research, Comm. ACM, 1975, 18 (6), pp. 333-340. Zbl0301.68048MR371172
- 2. D. R. BEAN, A. EHRENFEUCHT and G. F. MCNULTY, Avoidable patterns in strings of symbols, Pacific J. Math., 1979, 85, 2, pp. 261-294. Zbl0428.05001MR574919
- 3. W. BUCHER, A. EHRENFEUCHT and D. HAUSSLER, On Total Regulators Generated by Derivation Relations, Proc. of 12th International Colloquium on Automata, Languages and Programming; Lectures notes in Computer Science, 194, Springer-Verlag, 1985, pp, 71-79. Zbl0571.68056MR819242
- 4. C. CHOFFRUT and K. CULIK, On extendibility of unavoidable sets, Discrete Applied Mathematics, 1984, pp. 125-137. Zbl0629.68080MR761597
- 5. M. CROCHEMORE, M. LEREST and P. WENDER, An optimal test on finite unavoidable sets of words, Information Processing Letter, 1983, 16, pp. 179-180. Zbl0506.68057MR707587
- 6. A. EHRENFEUCH, D. HAUSSLER and G. ROZENBERG, On regularity of context-free languages, Theor Comp. Sci., 1983, 27, pp. 311-332. Zbl0553.68044MR731068
- 7. N. J. FINE and H. S. WILF, Uniqueness Theorem for Periodic functions, Proc. Am. Math. Soc., 1965, 16, pp. 109-114. Zbl0131.30203MR174934
- 8. G. HIGMAN, Ordering by divisibility in abstract algebras, Proc. London Math. Soc., 1952, 2, pp. 326-336. Zbl0047.03402MR49867
- 9. KRUSKAL, Well-quasi ordering, The Tree Theorem, and Vazsonyi's conjecture, Trans. Amer. Math. Soc., 1960, 95, pp. 210-225. Zbl0158.27002MR111704
- 10. KRUSKAL, The theory of well-quasi ordering: a frequently discovered concept, J. Comb. Theory Ser., 1972, A 13 (3), pp. 297-305. Zbl0244.06002MR306057
- 11. G. KUCHEROV and M. RUSINOVITCH, On Ground-Reducibility Problem for Word Rewriting Systems with Variables, In E. DEATON and R. WILKERSON, eds., Proceedings 1994 ACM/SIGAPP Symposium on Applied Computing, Phoenix, March 1994, ACM-Press.
- 12. G. KUCHEROV and M. RUSINOVITCH, Complexity of Testing Ground Reducibility for Linear Word Rewriting Systems with Variables, preprint.
- 13. LOTHAIRE, Combinatorics on words, chapter 1, Add.-Wesley, by D. PERRIN, 1983. Zbl0514.20045MR675953
- 14. ld, chapter 6, by J. SAKAROVITCH.
- 15. E. OCHMANSKI, Inevitability in concurrent Systems, IPL 25, 1987, pp. 221-225. Zbl0653.68011MR896138
- 16. L. PUEL, Using unavoidable sets of trees to generalize Kruskal's theorem, J.S.C., 1989, Vol. 8, No. 4, pp. 335-382. Zbl0676.06003MR1021611
- 17. L. ROSAZ, Inventories of unavoidable languages and the word-extension conjecture, to appear in Theoretical Computer Science. Zbl0902.68099MR1625403
- 18. L. ROSAZ, Unavoidable languages, Mémoire de thèse, LITP Report.
- 19. M. P. SCHUTZENBERGER, On the synchronizing properties of certain prefix codes, Information and Control, 1964, 7, pp. 23-36. Zbl0122.15004MR199049
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.