Relationships among , , and the determinant
Eric Allender; Mitsunori Ogihara
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1996)
- Volume: 30, Issue: 1, page 1-21
- ISSN: 0988-3754
Access Full Article
topHow to cite
topAllender, Eric, and Ogihara, Mitsunori. "Relationships among $PL$, $\#L$, and the determinant." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 30.1 (1996): 1-21. <http://eudml.org/doc/92523>.
@article{Allender1996,
author = {Allender, Eric, Ogihara, Mitsunori},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {nondeterministic logspace-bounded machine; reducibility},
language = {eng},
number = {1},
pages = {1-21},
publisher = {EDP-Sciences},
title = {Relationships among $PL$, $\#L$, and the determinant},
url = {http://eudml.org/doc/92523},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Allender, Eric
AU - Ogihara, Mitsunori
TI - Relationships among $PL$, $\#L$, and the determinant
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 1
SP - 1
EP - 21
LA - eng
KW - nondeterministic logspace-bounded machine; reducibility
UR - http://eudml.org/doc/92523
ER -
References
top- 1. E. ALLENDER, Oracles vs Proof techniques that do not relativize, Proc. SIGAL International Symposium on Algorithms, Lecture Notes in Computer Science, 1990, 450, pp. 39-52. MR1081954
- 2. E. ALLENDER, R. BEALS and M. OGIHARA, The complexity of matrix rank and feasible systems of linear equations, to appear in Proc. 28th STOC, 1996. Zbl0937.65150MR1724603
- 3. E. ALLENDER and J. JIAO, Depth reduction for noncommutative arithmetic circuits, Proc. 25th STOC, 1993, pp. 515-522. Zbl1310.68097
- 4. C. ÀLVAREZ, J. BALCÁZAR and B. JENNER, Adaptive logspace reducibility and parallel time, Mathematical Systems Theory, 1995, 28, pp. 117-140. Zbl0815.68054MR1303563
- 5. C. ÀLVAREZ and B. JENNER, A very hard log-space counting class, Theoretical Computer Science, 1993, 107, pp. 3-30. Zbl0813.68098MR1201163
- 6. J. BALCÁZAR, Adaptive logspace and depth-bounded reducibilities, Proc. 6th IEEE Structure in Complexity Theory Conference, 1991, pp. 240-254.
- 7. S. BERKOWITZ, On computing the determinant in small parallel time using a small number of processors, Information Processing Letters, 1984, 18, pp. 147-150. Zbl0541.68019MR760366
- 8. A. BORODIN, S. COOK and N. PIPPENGER, Parallel computation for well-endowed rings and space-bounded probabilistic machines, Information and Control, 1983, 48, pp. 113-136. Zbl0598.68043MR750405
- 9. A. BORODIN, S. COOK, P. DYMOND, W. RUZZO and M. TOMPA, Two applications of inductive counting for complementation problems, SIAM Journal on Computing, 1989, 18, pp. 559-578. Zbl0678.68031MR996836
- 10. S. BUSS, S. COOK, A. GUPTA and V. RAMACHANDRAN, An optimal parallel algorithm for formula evaluation, SIAM Journal on Computing, 1992, 21, pp. 755-780. Zbl0825.68424MR1171860
- 11. A. BEN-DOR and S. HALEVI, Zero-one permanent is #P-complete, a simpler proof, Proc. 2nd Israel Symposium on Theory of Computing and Systems (ISTCS93), IEEE press.
- 12. D. BARRINGTON, N. IMMERMAN and H. STRAUBING, On uniformity within NC1, Journal of Computer and System Sciences, 1990, 41, pp. 274-306. Zbl0719.68023MR1079468
- 13. R. BEIGEL, N. REINGOLD and D. SPIELMAN, PP is closed under intersection, Journal of Computer and System Sciences, 1995, 50, pp. 191-202. Zbl0827.68040MR1330252
- 14. G. BUNTROCK, C. DAMM, U. HERTRAMPF and C. MEINEL, Structure and Importance of Logspace MOD-Classes, Mathematical Systems Theory, 1992, 25, pp. 223-237. Zbl0749.68033MR1151340
- 15. S. COOK, A taxonomy of problems with fast parallel algorithms, Information and Control, 1985, 64, pp. 2-22. Zbl0575.68045MR837088
- 16. C. DAMM, DET = L#L?, Informatik-Preprint 8, Fachbereich Informatik der Humboldt-Universität zu Berlin, 1991.
- 17. S. FENNER, L. FORTNOW and S. KURTZ, Gap-definable counting classes, Journal of Computer and System Sciences, 1994, 48, pp. 116-148. Zbl0802.68051MR1259653
- 18. L. FORTNOW and N. REINGOLD, PP is closed under truth-table reductions, Proc. 6th IEEE Structure in Complexity Theory Conference, 1991, pp. 13-15. Zbl0851.68029
- 19. J. GILL, Computational complexity of probabilistic Turing machines, SIAM Journal on Computing, 1977, 6, pp. 675-695. Zbl0366.02024MR464691
- 20. J. GILL, J. HUNT and J. SIMON, Deterministic simulation of tape-bounded probabilistic Turing machine transducers, Theoretical Computer Science, 1980, 12, pp. 333-338. Zbl0442.68034MR589314
- 21. F. GREEN, J. KÖBLER, K. REGAN, T. SCHWENTICK and J. TORÁN, The power of the middle bit of a #P function, to appear in Journal of Computer and System Sciences. Zbl0849.68036MR1339555
- 22. S. GUPTA, The power of witness reduction, to appear in SIAM Journal on Computing. A preliminary version appeared in Proc. 6th IEEE Structure in Complexity Theory Conference, 1991, pp. 43-59.
- 23. D. ISAACSON and R. MADSEN, Markov Chains, Theory and Applications, Wiley and Sons, 1976. Zbl0332.60043MR407991
- 24. B. JENNER, personal communication.
- 25. H. JUNG, Relationships between probabilistic and deterministic tape complexity, Proc. 10th MFCS, Lecture Notes in Computer Science, 1981, 118, pp. 339-346. Zbl0462.68031MR652767
- 26. H. JUNG, On probabilistic tape complexity and fast circuits for matrix inversion problems, Proc, 11th ICALP, Lecture Notes in Computer Science, 1984, 172, pp. 281-291. Zbl0583.68024MR784256
- 27. H. JUNG, On probabilistic time and space, Proc. 12th ICALP, Lecture Notes in Computer Science, 1985, 194, pp. 310-317. Zbl0599.68043MR819266
- 28. H. JUNG, Stochastische Turingmaschinen und die Kompliziertheit arithmetischer Probleme, doctoral dissertation, Humboldt-Universität, East Berlin.
- 29. R. LADNER and N. LYNCH, Relativization of questions about log space computability, Mathematical Systems Theory, 1976, 10, pp. 19-32. Zbl0341.68036MR419190
- 30. R. LADNER, N. LYNCH and A. SELMAN, A comparison of polynomial-time reducibilities, Theoretical Computer Science, 1975, 1, pp. 103-123. Zbl0321.68039MR395319
- 31. I. MACARIE, Space-efficient deterministic simulation of probabilistic automata, Proc. 11th STACS, Lecture Notes in Computer Science, 1994, 775, pp. 109-122.
- 32. I. MACARIE, Space-bounded probabilistic computation: old and new stories, SIGACT News Complexity Theory Column 10 (edited by Lane Hemaspaandra), SIGACT News, 1995, 26, number 3, September, pp. 2-12.
- 33. N. NISAN, RL ⊆ SC, Computational Complexity, 1994, 4, pp. 1-11. Zbl0806.68043MR1272773
- 34. M. OGIHARA, NCk(NP) = ACk-1(NP), Proc. 11th STACS, Lecture Notes in Computer Science, 1994, 775, pp. 313-324. MR1288548
- 35. M. OGIHARA, The PL Hierarchy collapses, to appear in Proc. 28th STOC, 1996. Zbl0922.68054MR1427501
- 36. M. OGIWARA and L. HEMACHANDRA, A complexity theory for feasible closure properties, Journal of Computer and System Sciences, 1993, 46, pp. 295-325. Zbl0798.68060MR1228809
- 37. K. REGAN and T. SCHWENTICK, On the power of one bit of a #P-function, Proc. 4th Italian Conference on Theoretical Computer Science, World Scientific Press, Singapore, 1992, pp. 317-329. See also [21]. MR1254503
- 38. P. ROSSMANITH, personal communication.
- 39. W. RUZZO, J. SIMON and M. TOMPA, Space-bounded hierarchies and probabilistic computation, Journal of Computer and System Sciences, 1984, 28, pp. 216-230. Zbl0573.68021MR760544
- 40. S. SALUJA, A note on the permanent problem, Information Processing Letters, 1992, 43, pp. 1-5. Zbl0780.68067MR1179752
- 41. J. SIMON, On tape-bounded probabilistic Turing machine acceptors, Theoretical Computer Science, 1981, 16, pp. 158-167. Zbl0473.68044MR632672
- 42. J. SIMON, Space-bounded probabilistic Turing machine complexity classes are closed under complement, Proc. 13th STOC, 1981, pp. 158-167.
- 43. J. SIMON, J. GILL and J. HUNT, On tape-bounded probabilistic Turing machine transducers, Proc. 19th FOCS, 1978, pp. 107-112.
- 44. S. TODA, Counting problems computationally equivalent to the determinant, Technical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math., Univ. of Electro-Communications, Tokyo, 1991.
- 45. S. TODA, Classes of arithmetic circuits capturing the complexity of computing the determinant, IEICE Trans. Inf. and Syst., 1992, vol. E75-D, pp. 116-124.
- 46. J. TORÁN, Complexity classes defined by counting quantifiers, Journal of the ACM, 1991, 38, pp. 753-774. Zbl0799.68080MR1125929
- 47. L. VALIANT, The complexity of computing the Permanent, Theoretical Computer Science, 1979, 8, pp. 189-201. Zbl0415.68008MR526203
- 48. L. VALIANT, Why is Boolean complexity theory difficult? in Boolean Function Complexity, edited by M. S. Paterson, London Mathematical Society Lecture Notes, Series 169, Cambridge University Press, 1992. Zbl0769.68050MR1211869
- 49. V. VINAY, Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits, Proc. 6th IEEE Structure in Complexity Theory Conference, 1991, pp. 270-284.
- 50. K. WAGNER, The complexity of combinatorial problems with succinct input representation, Acta Informatica, 1986, 23, pp. 325-356. Zbl0621.68032MR853581
- 51. C. WILSON, Relativized NC, Mathematical Systems Theory, 1987, 20, pp. 13-29. Zbl0627.68043MR901891
- 52. C. B. WILSON, Decomposing NC and AC, SIAM Journal on Computing, 1990, 19, pp. 384-396. Zbl0692.68045MR1042734
- 53. V. ZANKÓ, #P-completeness via many-one reductions, International Journal of Foundations of Computer Science, 1991, 2, pp. 77-82. Zbl0739.68036MR1122511
- 54. D. ZUCKERMAN, personal communication.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.