On sets bounded truth-table reducible to P -selective sets

Thomas Thierauf; Seinosuke Toda; Osamu Watanabe

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1996)

  • Volume: 30, Issue: 2, page 135-154
  • ISSN: 0988-3754

How to cite

top

Thierauf, Thomas, Toda, Seinosuke, and Watanabe, Osamu. "On sets bounded truth-table reducible to $P$-selective sets." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 30.2 (1996): 135-154. <http://eudml.org/doc/92529>.

@article{Thierauf1996,
author = {Thierauf, Thomas, Toda, Seinosuke, Watanabe, Osamu},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {NP problems},
language = {eng},
number = {2},
pages = {135-154},
publisher = {EDP-Sciences},
title = {On sets bounded truth-table reducible to $P$-selective sets},
url = {http://eudml.org/doc/92529},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Thierauf, Thomas
AU - Toda, Seinosuke
AU - Watanabe, Osamu
TI - On sets bounded truth-table reducible to $P$-selective sets
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 2
SP - 135
EP - 154
LA - eng
KW - NP problems
UR - http://eudml.org/doc/92529
ER -

References

top
  1. [AA94] M. AGRAWAL and V. ARVIND, Polynomial-time truth-table reductions to P-selective sets, In Proc. 9th Structure in Complexity Theory Conference, 1994, IEEE, 24-30. 
  2. [AHH+93] V. ARVIND, Y. HAN, L. HEMACHANDRA, J. KÖBLER, A. LOZANO, M. MUNDHENK, M. OGIWARA, U. SCHÖNING, R. SILVESTRI and T. THIERAUF, Reductions to sets of low information content, Recent Developments in Complexity Theory, Cambridge University Press, (Also available as Technical Report TR-417, University of Rochester, Department of Computer Science, Rochester, NY, April 1992). Zbl0794.68058
  3. [AI186] E. ALLENDER, The complexity of sparse sets in P, In Proceedings 1st Structure in Complexity Theory Conference, 1986, 1-11, IEEE Computer Society. Zbl0608.68035MR854886
  4. [BDG88] J. BALCÁZAR, J. DÍAZ and J. GABARRÓ, Structural Complexity I. 1988, EATCS Monographs on Theoretical Computer Science, Springer-Verlag. Zbl0638.68040MR1047862
  5. [BDG91] J. BALCÁZAR, J. DÍAZ and J. GABARRÓ, Structural Complexity II. 1991, EATCS Monographs on Theoretical Computer Science, Springer-Verlag. Zbl0746.68032MR1056474
  6. [Bei88] R. BEIGEL, NP-hard sets are P-superterse unless R = NP, Technical Report 88-04, Department of Computer Science, The John Hopkins University, 1988. 
  7. [BKS94] R. BEIGEL, M. KUMMER and F. STEPHAN, Approximable sets. In Poc. 9th Structure in Complexity Theory Conference, IEEE, 12-23, 1994. MR1343609
  8. [ESY84] S. EVAN, A. SELMAN and Y. YACOBI, The complexity of promise problems with applications to public-key cryptography, Information and Control, 1984, 61, pp. 114-133. Zbl0592.94012MR772678
  9. [HHO+93] L. HEMACHANDRA, A. HOENE, M. OGIWARA, A. SELMAN, T. THIERAUF and J. WANG, Selectivity. In Proceedings of the 5th International Conference on Computation and Information, ICCI 93, IEEE, pp. 55-59, 1993. 
  10. [HOW92] L. HEMACHANDRA, M. OGIWARA and O. WATANABE, How hard are sparse sets? In Proc. 7th Strcuture in Complexity Theory Conference, IEEE 222-238, 1992. MR1249979
  11. [HL94] S. HOMER and L. LONGPRÉ, On Reductions of NP to Sparse Sets, Journal of Computer and System Sciences, 1994, 48, pp. 324-336. Zbl0806.68046MR1275036
  12. [JT93] B. JENNER and J. TORÁN, Computing functions with parallel queries to NP, In Proc. 8th Structure in Complexity Theory Conference, IEEE 280-291, 1, 1993. Zbl0873.68058MR1310807
  13. [Joc68] C. JOCKUSCH, Semirecursive sets and positive reducibility, Transactions of the AMS, 1968, 131, (2), pp. 420-436. Zbl0198.32402MR220595
  14. [KL82] R. KARP and R. LIPTON, Turing machines that take advice, L'Enseignement Mathématique, 1982, 28, pp. 191-209. Zbl0529.68025MR684233
  15. [Ko83] K. KO, On self-reducibility and weak P-selectivity, Journal of Computer and System Sciences, 1983, 26, pp. 209-221. Zbl0519.68062MR708837
  16. [LLS75] R. LADNER, N. LYNCH and A. SELMAN, A comparison of polynomial time reducibilities, Theoretical Computer Science, 1975, 1, (2), pp. 103-124. Zbl0321.68039MR395319
  17. [Mah82] S. MAHANEY, Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, Journal of Computer and System Sciences, 1982, 25, pp. 130-143. Zbl0493.68043MR680515
  18. [O94] M. OGIHRA, Polynomial-time membership comparable sets, In Proc. 9th Structure in Complexity Theory Conference, IEEE, 2-11, 1994. 
  19. [OW91] M. OGIWARA and O. WATANABE, On polynomial-time bounded truth-table reducibility of NP sets to sparse sets, SIAM Journal on Computing, 1991, 20, (3), pp.471-483. Zbl0741.68049MR1094526
  20. [Sal93] S. SALUJA, Relativized limitations of the left settechnique andclosure classes of sparse sets, In Proc. 8th Structure in Complexity Theory Conference, IEEE, 215-222, 1993. 
  21. [Sch90] U. SCHÖNING, The power of counting, In Complexity Theory Retrospective (A.Selman Ed.), Springer-Verlag, 1990, pp. 204-223. MR1060786
  22. [Sel79] A. SELMAN, P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP, Mathematical Systems Theory, 1979, 13, pp. 55-65. Zbl0405.03018MR548549
  23. [Sel82a] A. SELMAN, Analogues of Semirecursive sets and effective reducibilities to the study of NP complexity, Information and Control, 1982, pp.36-51. Zbl0504.03022MR693995
  24. [Sel82b] A. SELMAN, Reductions on NP and P-selective sets, Theoretical Computer Science, 1982, 19, pp. 287-304. Zbl0489.03016MR671872
  25. [Sto77] L. STOCKMEYER, The polynomial-time hierarchy, Theoretical Computer Science, 1977, 3, pp. 1-22. Zbl0353.02024MR438810
  26. [Tod91] S. TODA, On polynomial-time truth-table reducibilities of intractable sets of P-selective sets, Mathematical Systems Theory, 1991, pp. 69-82. Zbl0722.68059MR1096692
  27. [Tor93] J. TORÁN, Personal Communication. 
  28. [Val76] L. VALIANT, Relative complexity of checking and evaluating, Information Processing Letters, 1976, 5, (1), pp. 20-23. Zbl0342.68028MR403318
  29. [VV86] L. VALIANT and V. VAZIRANI, NP is as easy as detecting unique solutions, Theoretical Computer Science, 1986, 47, pp. 85-93. Zbl0621.68030MR871466
  30. [Wat90] O. WATANABE, Unpublished note. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.