Algorithme de Bareiss, algorithme des sous-résultants

Lionel Ducos

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1996)

  • Volume: 30, Issue: 4, page 319-347
  • ISSN: 0988-3754

How to cite

top

Ducos, Lionel. "Algorithme de Bareiss, algorithme des sous-résultants." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 30.4 (1996): 319-347. <http://eudml.org/doc/92540>.

@article{Ducos1996,
author = {Ducos, Lionel},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {numerical examples; Bareiss algorithm; subresultant algorithm; determinants; Gaussian elimination; fraction-free triangularization; computer tests},
language = {fre},
number = {4},
pages = {319-347},
publisher = {EDP-Sciences},
title = {Algorithme de Bareiss, algorithme des sous-résultants},
url = {http://eudml.org/doc/92540},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Ducos, Lionel
TI - Algorithme de Bareiss, algorithme des sous-résultants
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 4
SP - 319
EP - 347
LA - fre
KW - numerical examples; Bareiss algorithm; subresultant algorithm; determinants; Gaussian elimination; fraction-free triangularization; computer tests
UR - http://eudml.org/doc/92540
ER -

References

top
  1. 1. A. G. AKRITAS, Elements of Computer Algebra with Applications, John Wiley and Sons, 1989. Zbl0675.68001
  2. 2. E. H. BAREISS, Sylverter's Identity and Multistep Integer-Preserving Gaussian Elimination, Math. Comp., 1968, 22, p. 565-578. Zbl0187.09701
  3. 3. W. S. BROWN et J. F. TRAUB, On Euclid's Algorithm and Theory of Subresultants, Ass. Comp. Mach., Octobre 1971, 18 (4), p. 505-514. Zbl0226.65041MR303684
  4. 4. H. COHEN, A Course in Computational Algebraic Number Theory, ch. 3, Springer-Verlag, 1993, p. 116-123. Zbl0786.11071MR1228206
  5. 5. L. DUCOS, Calcul du résultant et du pgcd dans les anneaux de polynômes, Mémoire de D.E.A., juin 1994. 
  6. 6. G. LABAHN, K. O. GEDDES et S. R. CZAPOR, Algorithms for Computer Algebra, Kluwer Academic Publishers, 1992. Zbl0805.68072MR1256483
  7. 7. T. RECIO, L. GONZÁLEZ-VEGA, H. LOMBARDI et M.-F. ROY, Spécialisation de la suite de sturm et sous-résultants (I). Informatique théorique et Applications, décembre 1990, 24 (6), p. 561-588. Zbl0732.68059MR1082916
  8. 8. D. LAZARD, Sous-résultants, Manuscrit non publié. 
  9. 9. R. LOOS, Generalized Polynomial Remainder Sequences, Symbolic and Algebraic Computation, Computing, Springer-Verlag, 1982, Supplementum (4), p. 115-137. Zbl0577.13001MR728969
  10. 10. C. QUITTÉ, Une démonstration de l'algorithme de Bareiss par l'algèbre extérieure, manuscrit non publié. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.