On semidirect and two-sided semidirect products of finite 𝒥 trivial monoids

F. Blanchet-Sadri

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1996)

  • Volume: 30, Issue: 5, page 457-482
  • ISSN: 0988-3754

How to cite

top

Blanchet-Sadri, F.. "On semidirect and two-sided semidirect products of finite $\mathcal {J}$trivial monoids." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 30.5 (1996): 457-482. <http://eudml.org/doc/92546>.

@article{Blanchet1996,
author = {Blanchet-Sadri, F.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {semidirect products; locally finite pseudovarieties; finite semilattice monoids; finite aperiodic monoids; pseudovarieties of monoids},
language = {eng},
number = {5},
pages = {457-482},
publisher = {EDP-Sciences},
title = {On semidirect and two-sided semidirect products of finite $\mathcal \{J\}$trivial monoids},
url = {http://eudml.org/doc/92546},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Blanchet-Sadri, F.
TI - On semidirect and two-sided semidirect products of finite $\mathcal {J}$trivial monoids
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 5
SP - 457
EP - 482
LA - eng
KW - semidirect products; locally finite pseudovarieties; finite semilattice monoids; finite aperiodic monoids; pseudovarieties of monoids
UR - http://eudml.org/doc/92546
ER -

References

top
  1. 1. D. ALBERT, R. BALDINGER and J. RHODES, Undecidability of the identity problem for finite semigroups, Journal of Symbolic Logic, 1992, 57, pp. 179-192. Zbl0780.20035MR1150933
  2. 2. J. ALMEIDA, Semidirect products of pseudovarieties from the univers al algebraist's point of view, Journal of Pure and Applied Algebra, 1989, 60, pp. 113-128. Zbl0687.20053MR1020712
  3. 3. J. ALMEIDA, On iterated semidirect products of finite semilattices, Journal of Algebra, 1991, 142, pp. 239-254. Zbl0743.20056MR1125216
  4. 4. J. ALMEIDA, Semigrupos Finitos e Álgebra Universal (Institute of Mathematics and Statistics of the University of São Paulo, 1992; 
  5. Finite Semigroups and Universal Algebra (World Scientifîc, Singapore, 1994. Zbl0844.20039MR1331143
  6. 5. J. ALMEIDA and P. WEIL, Free profinite semigroups over semidirect products, Izvestiya Vysshikh Učebnykh Zavedeniĭ Matematica, 1995, 1, pp. 3-31 Zbl0847.20055MR1391317
  7. 6. F. BLANCHET-SADRI, Some logical characterizations of the dot-depth hierarchy and applications, Ph. D. Thesis, McGill University, 1989. Zbl0831.68066MR2685431
  8. 7. F. BLANCHET-SADRI, Games, equations and the dot-depth hierarchy, Computers and Mathematics with Applications, 1989, 18, pp. 809-822. Zbl0682.03015MR1008808
  9. 8. F. BLANCHET-SADRI, On dot-depth two, RAIRO Informatique Théorique et Applications, 1990, 24, pp. 521-529. Zbl0718.68046MR1082913
  10. 9. F. BLANCHET-SADRI, Games, equations and dot-depth two monoids, Discrete Applied Mathematics, 1992, 39, pp.99-111. Zbl0791.20068MR1184681
  11. 10. F. BLANCHET-SADRI, The dot-depth of a generating class of aperiodic monoids is computable, International Journal of Foundations of Computer Science, 1992, 3, pp. 419-442. Zbl0776.68087MR1209555
  12. 11. BLANCHET-SADRI, Equations and dot-depth one, Semigroup Forum, 1993, 47, pp. 305-317. Zbl0814.20048MR1235764
  13. 12. F. BLANCHET-SADRI, Equations and monoid varieties of dot-depth one and two, Theoretïcal Computer Science, 1994, 123, pp. 239-258. Zbl0801.68105MR1256200
  14. 13. F. BLANCHET-SADRI, On a complete set of generators for dot-depth two, Discrete Applied Mathematics, 1994, 50, pp. 1-25. Zbl0793.68087MR1272549
  15. 14. F. BLANCHET-SADRI, Equations on the semidirect product of a finite semilattice by a J-trivial monoid of height k, RAIRO Informatique Théorique et Applications, 1995, 29, pp. 157-170. Zbl0833.68073MR1347591
  16. 15. F. BLANCHET-SADRI, Some logical characterizations of the dot-depth hierarchy and applications, Journal of Computer and System Sciences, 1995, 51, pp. 324-337. Zbl0831.68066MR1356511
  17. 16. F. BLANCHET-SADRI, Inclusion relations between some congraences related to the dot-depth hierarchy, Discrete Applied Mathematics, 1996, 68, pp. 33-71. Zbl0854.68051MR1393309
  18. 17. F. BLANCHET-SADRI and X. H. ZHANG, Equations on the semidirect product of a finite semilattice by a finite commutative monoid, Semigroup Forum, 1994, 49, pp. 67-81. Zbl0816.20052MR1272864
  19. 18. J. A. BRZOZOWSKI and F. E. FICH, Languages of R-trivial monoids, Journal of Computer and System Sciences, 1980, 20, pp. 32-49. Zbl0446.68066MR566640
  20. 19. J. A. BRZOZOWSKI and R. KNAST, The dot-depth hierarchy of star-f ree languages is infinite, Journal of Computer and System Sciences, 1978, 16, pp. 37-55. Zbl0368.68074MR471451
  21. 20. S. BURRIS and H. P. SANKAPPANAVAR, A Course in Universal Algebra, Springer-Verlag, New York, 1981. Zbl0478.08001MR648287
  22. 21. R. S. COHEN and J. A. BRZOZOWSKI, Dot-depth of star-free events, Journal of Computer and System Sciences, 1971, 5, pp. 1-15. Zbl0217.29602MR309676
  23. 22. A. EHRENFEUCHT, An application of games to the completeness problems for formalized theories, Fundamenta Mathematicae, 1961, 49, pp. 129-141. Zbl0096.24303MR126370
  24. 23. S. EILENBERG, Automata, Languages, and Machines, Vol. A, Academie Press, New York, 1974; Vol. B, Academic Press, New York, 1976. Zbl0359.94067MR530382
  25. 24. S. EILENBERG and M. P. SCHÜTZENBERGER, On pseudovarieties, Advances in Mathematics, 1976, 79, pp. 413-418. Zbl0351.20035MR401604
  26. 25. C. IRASTORZA, Base non finie de variétés, in STACS'85, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1985, 182, pp. 180-186. Zbl0572.20041MR786881
  27. 26. D. PERRIN and J. E PIN, First order logic andstar-free sets, Journal of Computer and System Sciences, 1986, 32, pp. 393-406. Zbl0618.03015MR858236
  28. 27. J. E. PIN, Variétés de Langages Formels, Masson, Paris, 1984; Varieties of Formal Languages, North Oxford Academic, London, 1986 and Plenum, NewYork, 1986. Zbl0636.68093MR752695
  29. 28. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique et Applications, 1984, 18, pp.23-46. Zbl0559.68062MR750449
  30. 29. J. E. PIN, On semidirect products of two finite semilattices, Semigroup Forum, 1984, 28, pp.73-81. Zbl0527.20046MR729653
  31. 30. J. REITERMAN, The Birkhoff theorem for varieties of finite algebras, Algebra Universalis, 1982, 14, pp. 1-10. Zbl0484.08007MR634411
  32. 31. J. RHODES and B. TILSON, The kernel of monoid morphisms, Journal of Pure and Applied Algebra, 1989, 62, pp. 227-268. Zbl0698.20056MR1026876
  33. 32. I. SIMON, Hierarchies of events of dot-depth one, Ph. D. Thesis, University of Waterloo, 1972. MR2623305
  34. 33. I. SIMON, Piecewise testable events in Proc. 2nd GI Conf., Lecture Notes in Computer Science, 1975, 33, Springer-Verlag, Berlin, pp. 214-222. Zbl0316.68034MR427498
  35. 34. P. STIFFLER, Extension of the fundamental theorem of finite semigroups, Advances in Mathematics, 1973, 77, pp. 159-209. 
  36. 35. H. STRAUBING, Finite semigroup varieties of the form V * D, Journal of Pure and Applied Algebra, 1985, 36, pp. 53-94. Zbl0561.20042MR782639
  37. 36. H. STRAUBING and P. WEIL, On a conjecture concerning dot-depth two languages, Theoretical Computer Science, 1992, 104, pp. 161-183. Zbl0762.68037MR1186177
  38. 37. W. THOMAS, Classifying regular events in symbolic logic, Journal of Computer and System Sciences, 1982, 25, pp. 360-376. Zbl0503.68055MR684265
  39. 38. W. THOMAS, An application of the Ehrenfeucht-Fraïssé game in formal language theory, Mémoires de la Société Mathématique de France, 1984, 16, pp. 11-21. Zbl0558.68064MR792490
  40. 39. B. TILSON, Categories as algebra: an essential ingredient in the theory of semigroups, Journal of Pure andApplied Algebra, 1987, 48, pp. 83-198. Zbl0627.20031MR915990
  41. 40. P. WEIL, Closure of varieties of languages under products with counter, Journal of Computer and System Sciences, 1992, 45, pp. 316-339. Zbl0766.20023MR1193376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.