Decimations and sturmian words

Jacques Justin; Giuseppe Pirillo

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1997)

  • Volume: 31, Issue: 3, page 271-290
  • ISSN: 0988-3754

How to cite

top

Justin, Jacques, and Pirillo, Giuseppe. "Decimations and sturmian words." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 31.3 (1997): 271-290. <http://eudml.org/doc/92562>.

@article{Justin1997,
author = {Justin, Jacques, Pirillo, Giuseppe},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Sturmian infinite words},
language = {eng},
number = {3},
pages = {271-290},
publisher = {EDP-Sciences},
title = {Decimations and sturmian words},
url = {http://eudml.org/doc/92562},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Justin, Jacques
AU - Pirillo, Giuseppe
TI - Decimations and sturmian words
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 3
SP - 271
EP - 290
LA - eng
KW - Sturmian infinite words
UR - http://eudml.org/doc/92562
ER -

References

top
  1. 1. J. BERSTEL, Fibonacci words - a survey, in G. Rosenberg, A. Salomaa eds., The Book of L, Springer-Verlag, Berlin, 1986. Zbl0589.68053
  2. 2. J. BERSTEL and P. SÉÉBOLD, A characterization of Sturmian morphisms, in A. BORZYSKOWSKI, S. SOKOLOWSKI eds., MFCS '93, Lect. Notes Comp. Sci. Springer-Verlag, 1993. Zbl0925.11026MR1265070
  3. 3. J. BERSTEL and P. SÉÉBOLD, A remark on morphic Sturmian words, R.A.I.R.O., I.T. 1994, 28, 3-4, pp. 255-263. Zbl0883.68104MR1282447
  4. 4. T.C. BROWN, Description of the Characteristic Sequence of an irrational, Canad. Math. Bull., 1993, 36, 1, pp. 15-21. Zbl0804.11021MR1205889
  5. 5. E. M. COVEN and G. A. HEDLUND, Sequences with Minimal Block Growth, Math. System Theory, 1973, 7, 2, pp. 138-153. Zbl0256.54028MR322838
  6. 6. D. CRISP, W. MORAN, A. POLLINGTON and P. SHIVE, Substitution invariant cutting sequences, Journal de Théorie des Nombres de Bordeaux, 1993, 5, pp. 123-137. Zbl0786.11041MR1251232
  7. 7. A. de LUCA and F. MIGNOSI, Some Combinatorial Properties of Sturmian Words, Theoretical Computer Science 136, 1994, pp. 361-385. Zbl0874.68245MR1311214
  8. 8. X. DROUBAY, Palindromes in the Fibonacci word, Inf. Proc. Lett., 1995, 55, pp. 217-221. Zbl1004.68537MR1351896
  9. 9. S. DULUCQ and D. GOUYOU-BEAUCHAMPS, Sur les facteurs des suites de Sturm, Theoretical Computer Science, 1990, 71, pp. 381-400. Zbl0694.68048MR1057771
  10. 10. G. A. HEDLUND and M. MORSE, Symbolic Dynamics II. Sturmian Trajectories, Amer. J. Math., 1940, 62, pp.1-42. Zbl0022.34003MR745JFM66.0188.03
  11. 11. J. JUSTIN and G. PIRILLO, On a combinatorial property of Sturmian words, Theoretical Computer Science, 1996, 154, pp. 387-394. Zbl0872.68144MR1369538
  12. 12. F. MIGNOSI, Infinite words with linear subword complexity, Theoretical Computer Science, 1989, 65, pp. 221-242. Zbl0682.68083MR1020489
  13. 13. F. MIGNOSI and P. SÉÉBOLD, Morphismes sturmiens et règles de Rauzy, Journal de Théorie des Nombres de Bordeaux, 1993, 5, pp.221-223. Zbl0797.11029MR1265903
  14. 14. M. LOTHAIRE, Combinatorics on Words, Addison-Wesley Pub. Co., London, 1983. Zbl0514.20045MR675953
  15. 15. G. RAUZY, Mots infinis en arithmétique, in Automata on Infinite Words, M.Nivat, D. Perrin Editors, Lect. Notes in Computer Science, vol. 192, Springer-Verlag, Berlin 1985. Zbl0613.10044MR814741
  16. 16. C. SERIES, The geometry of Markoff numbers, Math. Intelligencer, 1985, 7, pp. 20-29. Zbl0566.10024MR795536
  17. 17. B. A. VENKOV, Elementary Number Theory Translated and edited by H. Alderson, Wolters-Noordhoff, Groningen, 1970. Zbl0204.37101MR265267

NotesEmbed ?

top

You must be logged in to post comments.