Learning deterministic regular grammars from stochastic samples in polynomial time

Rafael C. Carrasco; José Oncina

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 1, page 1-19
  • ISSN: 0988-3754

How to cite

top

Carrasco, Rafael C., and Oncina, José. "Learning deterministic regular grammars from stochastic samples in polynomial time." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.1 (1999): 1-19. <http://eudml.org/doc/92587>.

@article{Carrasco1999,
author = {Carrasco, Rafael C., Oncina, José},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {stochastic regular languages},
language = {eng},
number = {1},
pages = {1-19},
publisher = {EDP-Sciences},
title = {Learning deterministic regular grammars from stochastic samples in polynomial time},
url = {http://eudml.org/doc/92587},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Carrasco, Rafael C.
AU - Oncina, José
TI - Learning deterministic regular grammars from stochastic samples in polynomial time
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 1
SP - 1
EP - 19
LA - eng
KW - stochastic regular languages
UR - http://eudml.org/doc/92587
ER -

References

top
  1. [1] D. Angluin, Identifying languages from stochastic examples. Internal Report YALEU/DCS/RR-614 (1988). 
  2. [2] M. Anthony and N. Biggs, Computational learning theory. Cambridge University Press, Cambridge (1992). Zbl0755.68115MR1159707
  3. [3] R. C. Carrasco and J. Oncina, Learning stochastic regular grammars by means of a state merging method, in Grammatical Inference and Applications, R. C. Carrasco and J. Oncina Eds., Springer-Verlag, Berlin, Lecture Notes in Artificial Intelligence 862 (1994). 
  4. [4] M. A. Castaño, F. Casacuberta and E. Vidal, Simulation of stochastic regular grammars through simple recurrent networks, in New Trends in Neural Computation, J. Mira, J. Cabestany and A. Prieto Eds., Springer Verlag, Lecture Notes in Computer Science 686 (1993) 210-215. 
  5. [5] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley and Sons, New York (1991). Zbl0762.94001MR1122806
  6. [6] W. Feller, An introduction to probability theory and its applications, John Wiley and Sons, New York (1950). Zbl0039.13201MR38583
  7. [7] K. S. Fu, Syntactic pattern recognition and applications, Prentice Hall, Englewood Cliffs, N. J. (1982). Zbl0521.68091
  8. [8] C. L . Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun and Y. C. Lee, Learning and extracting finite state automata with second order recurrent neural networks. Neural Computation 4 (1992) 393-405. 
  9. [9] E. M. Gold, Language identification in the limit. Inform. and Control 10 (1967) 447-474. Zbl0259.68032
  10. [10] W. Hoeffding, Probability inequalities for sums of bounded random variables. Amer. Statist. Association J. 58 (1963) 13-30. Zbl0127.10602MR144363
  11. [11] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages and computation, Addison Wesley, Reading, Massachusetts (1979). Zbl0426.68001MR645539
  12. [12] K. Lang, Random DFA's can be approximately learned from sparse uniform examples, in Proc. of the 5th Annual ACM Workshop on Computational Learning Theory (1992). 
  13. [13] F. J. Maryanski and T. L. Booth, Inference of finite-state probabilistic grammars. IEEE Trans. Comput. C26 (1997) 521-536. Zbl0365.94069MR464730
  14. [14] J. Oncina and P. García, Inferring regular languages in polynomial time, in Pattern Recognition and Image Analysis, N. Pérez de la Blanca, A. Sanfeliu and E. Vidal Eds., World Scientific (1992). 
  15. [15] J. B. Pollack, The induction of dynamical recognizers. Machine Learning 7 (1991) 227-252. 
  16. [16] A. S. Reber, Implicit learning of artificial grammars. J. Verbal Learning and Verbal Behaviour 6 (1967) 855-863. 
  17. [17] D. Ron, Y. Singer and N. Tishby, On the learnability and usage of acyclic probabilistic finite automata, in Proc. of the 8th Annual Conference on Computational Learning Theory (COLT'95), ACM Press, New York (199531-40. Zbl0915.68124
  18. [18] A. W. Smith and D. Zipser, Learning sequential structure with the real-time recurrent learning algorithm. Internat J. Neural Systems 1 (1989) 125-131. 
  19. [19] A. Stolcke and S. Omohundro, Hidden Markov model induction by Bayesian model merging, in Advances in Neural Information Processing Systems 5, C. L. Giles, S. J. Hanson and J. D. Cowan Eds., Morgan Kaufman, Menlo Park, California (1993). 
  20. [20] A. van der Mude and A. Walker, On the inference of stochastic regular grammars. Inform. and Control 38 (1978) 310-329. Zbl0387.68070MR521217
  21. [21] R. L. Watrous and G. M. Kuhn, Induction of finite-state languages using second-order recurrent networks. Neural Computation 4 (1992) 406-414. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.