On the average case complexity of some P-complete problems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 1, page 33-45
- ISSN: 0988-3754
Access Full Article
topHow to cite
topSerna, Maria, and Xhafa, Fatos. "On the average case complexity of some P-complete problems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.1 (1999): 33-45. <http://eudml.org/doc/92589>.
@article{Serna1999,
author = {Serna, Maria, Xhafa, Fatos},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {P-complete problems},
language = {eng},
number = {1},
pages = {33-45},
publisher = {EDP-Sciences},
title = {On the average case complexity of some P-complete problems},
url = {http://eudml.org/doc/92589},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Serna, Maria
AU - Xhafa, Fatos
TI - On the average case complexity of some P-complete problems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 1
SP - 33
EP - 45
LA - eng
KW - P-complete problems
UR - http://eudml.org/doc/92589
ER -
References
top- [1] J. L. Balcázar, J. Díaz and J. Gabarró, Structural complexity II, Springer Verlag (1995). Zbl0826.68048MR1324338
- [2] N. Calkin and A. Frieze, Probabilistic analysis of a parallel algorithm for finding a maximal independent set. Random Structures and Algorithrns 1 (1990) 39-50. Zbl0707.68042MR1068490
- [3] S. A. Cook, An Observation on time-storage trade-offs. J. Comp. Syst. Sci. 9 (1974) 308-316. Zbl0306.68026MR398160
- [4] D. Coppersmith, P. Raghavan and M. Tompa, Parallel graph algorithms that are efficient in average, in Proc. of 28th IEEE Symposium on Foundations of Computer Science (1987) 260-269.
- [5] J. Díaz, M. Serna, P. Spirakis and J. Torán, On the expected depth of Boolean circuits. Technical Report LSI-94-7-R, Universitat Politècnica de Catalunya, Dept. de LSI (1994).
- [6] R. Greenlaw, H. J. Hoover and W. L. Ruzzo, Limits to parallel computation: P-completeness theory. Oxford University Press (1995). Zbl0829.68068MR1333600
- [7] J. Hoover and W. Ruzzo, A compendium of problems complete for P. Manuscript (1984).
- [8] N. D. Jones and T. Laaser, Complete problems for deterministic polynomial time. Theoret. Comput. Sci. 3 (1977) 105-117. Zbl0352.68068MR455543
- [9] D. E. Knuth, The art of computer programming, Vol. 1. Addison-Wesley (1973). Zbl0302.68010MR378456
- [10] D. Kozen, Complexity of finitely presented algebras; in Proc. of 9th ACM STOC (1977) 164-167. MR488999
- [11] R. E. Ladner, The circuit value problem is logspace complete for P. SIGACT News 7 (1975) 18-20.
- [12] M. Serna, The parallel approximbility of P-complete problems. PhD thesis, Universitat Politècnica de Catalunya (1990).
- [13] M. Serna, Approximating linear programming is logspace complete for P. Inform. Proc. Lett 37 (1991) 233-236. Zbl0713.90046MR1095711
- [14] S. Sahni and T. Gonzalez, P-complete approximation problems. J. Assoc. Comput. Mach. 23 (1976) 555-565. Zbl0348.90152MR408313
- [15] M. Serna and P. G. Spirakis, The approximability of problems complete for P, in International Symposium on Optimal Algorithms, Springer-Verlag, Lecture Notes in Computer Science 401 (1989) 193-204. Zbl0704.68041MR1048163
- [16] T. Tsukiji and F. Xhafa, On the expected depth of randomly generated circuits, J. Díaz and M. Serna Eds., in Proc. of Fourth European Symposium on Algorithms, ESA'96, Springer-Verlag, Lecture Notes in Computer Science 1136 (1996) 208-220. Zbl0939.68044MR1469233
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.