Strongly locally testable semigroups with commuting idempotents and related languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 1, page 47-57
- ISSN: 0988-3754
Access Full Article
topHow to cite
topSelmi, Carla. "Strongly locally testable semigroups with commuting idempotents and related languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.1 (1999): 47-57. <http://eudml.org/doc/92590>.
@article{Selmi1999,
author = {Selmi, Carla},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {strongly locally testable semigroups with commuting idempotents},
language = {eng},
number = {1},
pages = {47-57},
publisher = {EDP-Sciences},
title = {Strongly locally testable semigroups with commuting idempotents and related languages},
url = {http://eudml.org/doc/92590},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Selmi, Carla
TI - Strongly locally testable semigroups with commuting idempotents and related languages
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 1
SP - 47
EP - 57
LA - eng
KW - strongly locally testable semigroups with commuting idempotents
UR - http://eudml.org/doc/92590
ER -
References
top- [1] J. Almeida, Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). Zbl0844.20039MR1331143
- [2] J. Almeida, The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. Zbl0671.08003MR981423
- [3] J. Almeida, Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). MR1051957
- [4] J. Almeida, Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. Zbl0724.08003MR1090741
- [5] J. Almeida, On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. Zbl0715.08006MR1058478
- [6] J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). Zbl0877.20038MR1630619
- [7] J. Almeida and P. Weil, Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. Zbl0847.20055MR1391317
- [8] C. J. Ash, T. E. Hall and J.-E. Pin, On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. Zbl0699.68091MR1049266
- [9] D. Beauquier and J.-E. Pin, Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. Zbl0753.68054MR1161008
- [10] J. A. Brzozowski and I. Simon, Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. Zbl0255.94032MR319404
- [11] S. Eilenberg, Automata, languages and machines. Academic Press, New York, Vol. B (1976). Zbl0359.94067MR530383
- [12] S. Eilenberg and M. P. Schützenberger, On pseudovarieties. Adv. in Math. 19 (1976) 413-418. Zbl0351.20035MR401604
- [13] R. McNaughton, Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. Zbl0287.02022MR392544
- [14] J.-E. Pin, Variétés de Langages Formels, Masson, Paris (1984). Zbl0636.68093MR752695
- [15] J.-E. Pin and H. Straubing, Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. Zbl0635.20028MR873155
- [16] J. Reiterman, The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. Zbl0484.08007MR634411
- [17] M. P. Schützenberger, On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. Zbl0131.02001MR176883
- [18] C. Selmi, Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).
- [19] C. Selmi, Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. Zbl0872.68092MR1398868
- [20] I. Simon, Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. Zbl0316.68034MR427498
- [21] P. Weil, Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). Zbl0799.20051MR1142369
- [22] Y. Zalcstein, Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. Zbl0242.68038MR307538
- [23] Y. Zalcstein, Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. Zbl0273.20049MR320194
- [24] M. Zeitoun, Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.