Strongly locally testable semigroups with commuting idempotents and related languages

Carla Selmi

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 1, page 47-57
  • ISSN: 0988-3754

How to cite

top

Selmi, Carla. "Strongly locally testable semigroups with commuting idempotents and related languages." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.1 (1999): 47-57. <http://eudml.org/doc/92590>.

@article{Selmi1999,
author = {Selmi, Carla},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {strongly locally testable semigroups with commuting idempotents},
language = {eng},
number = {1},
pages = {47-57},
publisher = {EDP-Sciences},
title = {Strongly locally testable semigroups with commuting idempotents and related languages},
url = {http://eudml.org/doc/92590},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Selmi, Carla
TI - Strongly locally testable semigroups with commuting idempotents and related languages
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 1
SP - 47
EP - 57
LA - eng
KW - strongly locally testable semigroups with commuting idempotents
UR - http://eudml.org/doc/92590
ER -

References

top
  1. [1] J. Almeida, Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). Zbl0844.20039MR1331143
  2. [2] J. Almeida, The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. Zbl0671.08003MR981423
  3. [3] J. Almeida, Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). MR1051957
  4. [4] J. Almeida, Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. Zbl0724.08003MR1090741
  5. [5] J. Almeida, On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. Zbl0715.08006MR1058478
  6. [6] J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). Zbl0877.20038MR1630619
  7. [7] J. Almeida and P. Weil, Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. Zbl0847.20055MR1391317
  8. [8] C. J. Ash, T. E. Hall and J.-E. Pin, On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. Zbl0699.68091MR1049266
  9. [9] D. Beauquier and J.-E. Pin, Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. Zbl0753.68054MR1161008
  10. [10] J. A. Brzozowski and I. Simon, Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. Zbl0255.94032MR319404
  11. [11] S. Eilenberg, Automata, languages and machines. Academic Press, New York, Vol. B (1976). Zbl0359.94067MR530383
  12. [12] S. Eilenberg and M. P. Schützenberger, On pseudovarieties. Adv. in Math. 19 (1976) 413-418. Zbl0351.20035MR401604
  13. [13] R. McNaughton, Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. Zbl0287.02022MR392544
  14. [14] J.-E. Pin, Variétés de Langages Formels, Masson, Paris (1984). Zbl0636.68093MR752695
  15. [15] J.-E. Pin and H. Straubing, Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. Zbl0635.20028MR873155
  16. [16] J. Reiterman, The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. Zbl0484.08007MR634411
  17. [17] M. P. Schützenberger, On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. Zbl0131.02001MR176883
  18. [18] C. Selmi, Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994). 
  19. [19] C. Selmi, Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. Zbl0872.68092MR1398868
  20. [20] I. Simon, Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. Zbl0316.68034MR427498
  21. [21] P. Weil, Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). Zbl0799.20051MR1142369
  22. [22] Y. Zalcstein, Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. Zbl0242.68038MR307538
  23. [23] Y. Zalcstein, Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. Zbl0273.20049MR320194
  24. [24] M. Zeitoun, Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.