Calculs d'invariants primitifs de groupes finis

Ines Abdeljaouad

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 1, page 59-77
  • ISSN: 0988-3754

How to cite


Abdeljaouad, Ines. "Calculs d'invariants primitifs de groupes finis." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.1 (1999): 59-77. <>.

author = {Abdeljaouad, Ines},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {permutation groups; invariant polynomial ring; algorithm},
language = {fre},
number = {1},
pages = {59-77},
publisher = {EDP-Sciences},
title = {Calculs d'invariants primitifs de groupes finis},
url = {},
volume = {33},
year = {1999},

AU - Abdeljaouad, Ines
TI - Calculs d'invariants primitifs de groupes finis
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 1
SP - 59
EP - 77
LA - fre
KW - permutation groups; invariant polynomial ring; algorithm
UR -
ER -


  1. [1] I. Abdeljaouad, Calculs d'invariants primitifs minimaux et implantation en Axiom, Mémoire de stage, DEA Algorithmique (1996). Disponible sur la page web du Projet Galois du GDR MEDICIS : 
  2. [2] I. Abdeljaouad, Package PrimitiveInvariant sous GAP, (1997). Disponible sur la page web du Projet Galois du GDR MEDICIS : 
  3. [3] J. M. Arnaudiès and A. Valibouze, Lagrange resolvents. J. Pure Appl. Algebra (1997). Zbl0945.12004MR1457831
  4. [4] E. H. Berwick, The condition that a quintic equation should be soluble by radicals. Proc. London Math. Soc. 14 (1915) 301-307. Zbl45.0187.13JFM45.1227.04
  5. [5] E. H. Berwick, On soluble sextic equations. Proc. London Math. Soc. 29 (1929) 1-28. Zbl54.0125.03JFM54.0125.03
  6. [6] A. Cayley, On a new auxiliary equation in the theory of equation of fifth order. Philos. Trans. Roy. Soc. London, CLL (1861). 
  7. [7] A. Colin, Formal computation of Galois groups with relative resolvents, AAECC'95, Springer Verlag, Lecture Notes in Computer Science 948 (1995) 169-182. Zbl0887.12006MR1448163
  8. [8] A. Colin, Solving a System of algebraic equations with symmetries. J. Pure and Appl. Algebra (1996). Zbl0890.68079MR1457839
  9. [9] H. O. Foulkes, The resolvents of an equation of seventh degree. Quart. J. Math. Oxford Ser. (1931) 9-19. Zbl0001.11601
  10. [10] G. A. P. Groups, algorithms and programming, Martin Schönert and others, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochoschule, Aachem, (1993). 
  11. [11] K. Girstmair, On invariant polynomials and their application in field theory. Maths of Comp. 48 (1987) 781-797. Zbl0637.12012MR878706
  12. [12] C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villard, Paris (1870). Zbl0828.01011
  13. [13] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields. J. Symbolic Commutation (1995). Zbl0889.13004MR1400337
  14. [14] F. Lehobey, Resolvent computation by resultants without extraneous powers. J. Pure Appl. Algebra (1999) à paraître. Zbl1113.12301
  15. [15] E. Luther, Ueber die factoren des algebraisch lôsbaren irreducible Gleichungen vom sechsten Grade und ihren Resolvanten. Journal für Math. 37 (1848) 193-220. 
  16. [16] N. Rennert and A. Valibouze, Modules de Cauchy, Rapport interne LIP6 (1997). 
  17. [17] L. Soicher, The computation of the Galois groups, Thesis in departement of computer science, Concordia University, Montreal, Quebec, Canada (1981). 
  18. [18] R. P. Stauduhar, The computation of Galois groups. Math. Cornp. 27 (1973) 981-996. Zbl0282.12004MR327712
  19. [19] B. Sturmfels, Algorithms in invariant theory, Wien, New-York: Springer Verlag (1993). Zbl0802.13002MR1255980
  20. [20] A. Valibouze, Groupes de Galois jusqu'en degré 7. Rapport interne LIP6 (1997). 
  21. [21] A. Vandermonde, Mémoire de l'Académie des Sciences de Paris (1771). 
  22. [22] R. L. Wilson, A method for the determination of the Galois group, Amer. Math. Soc. (1949). MR39689

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.