Calculs d'invariants primitifs de groupes finis
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 1, page 59-77
- ISSN: 0988-3754
Access Full Article
topHow to cite
topAbdeljaouad, Ines. "Calculs d'invariants primitifs de groupes finis." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.1 (1999): 59-77. <http://eudml.org/doc/92591>.
@article{Abdeljaouad1999,
author = {Abdeljaouad, Ines},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {permutation groups; invariant polynomial ring; algorithm},
language = {fre},
number = {1},
pages = {59-77},
publisher = {EDP-Sciences},
title = {Calculs d'invariants primitifs de groupes finis},
url = {http://eudml.org/doc/92591},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Abdeljaouad, Ines
TI - Calculs d'invariants primitifs de groupes finis
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 1
SP - 59
EP - 77
LA - fre
KW - permutation groups; invariant polynomial ring; algorithm
UR - http://eudml.org/doc/92591
ER -
References
top- [1] I. Abdeljaouad, Calculs d'invariants primitifs minimaux et implantation en Axiom, Mémoire de stage, DEA Algorithmique (1996). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://rnedicis.polyteclinique.fr/medicis/projetGalois
- [2] I. Abdeljaouad, Package PrimitiveInvariant sous GAP, (1997). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois
- [3] J. M. Arnaudiès and A. Valibouze, Lagrange resolvents. J. Pure Appl. Algebra (1997). Zbl0945.12004MR1457831
- [4] E. H. Berwick, The condition that a quintic equation should be soluble by radicals. Proc. London Math. Soc. 14 (1915) 301-307. Zbl45.0187.13JFM45.1227.04
- [5] E. H. Berwick, On soluble sextic equations. Proc. London Math. Soc. 29 (1929) 1-28. Zbl54.0125.03JFM54.0125.03
- [6] A. Cayley, On a new auxiliary equation in the theory of equation of fifth order. Philos. Trans. Roy. Soc. London, CLL (1861).
- [7] A. Colin, Formal computation of Galois groups with relative resolvents, AAECC'95, Springer Verlag, Lecture Notes in Computer Science 948 (1995) 169-182. Zbl0887.12006MR1448163
- [8] A. Colin, Solving a System of algebraic equations with symmetries. J. Pure and Appl. Algebra (1996). Zbl0890.68079MR1457839
- [9] H. O. Foulkes, The resolvents of an equation of seventh degree. Quart. J. Math. Oxford Ser. (1931) 9-19. Zbl0001.11601
- [10] G. A. P. Groups, algorithms and programming, Martin Schönert and others, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochoschule, Aachem, gap@samson.math.rwth-aachen.de (1993).
- [11] K. Girstmair, On invariant polynomials and their application in field theory. Maths of Comp. 48 (1987) 781-797. Zbl0637.12012MR878706
- [12] C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villard, Paris (1870). Zbl0828.01011
- [13] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields. J. Symbolic Commutation (1995). Zbl0889.13004MR1400337
- [14] F. Lehobey, Resolvent computation by resultants without extraneous powers. J. Pure Appl. Algebra (1999) à paraître. Zbl1113.12301
- [15] E. Luther, Ueber die factoren des algebraisch lôsbaren irreducible Gleichungen vom sechsten Grade und ihren Resolvanten. Journal für Math. 37 (1848) 193-220.
- [16] N. Rennert and A. Valibouze, Modules de Cauchy, Rapport interne LIP6 (1997).
- [17] L. Soicher, The computation of the Galois groups, Thesis in departement of computer science, Concordia University, Montreal, Quebec, Canada (1981).
- [18] R. P. Stauduhar, The computation of Galois groups. Math. Cornp. 27 (1973) 981-996. Zbl0282.12004MR327712
- [19] B. Sturmfels, Algorithms in invariant theory, Wien, New-York: Springer Verlag (1993). Zbl0802.13002MR1255980
- [20] A. Valibouze, Groupes de Galois jusqu'en degré 7. Rapport interne LIP6 (1997).
- [21] A. Vandermonde, Mémoire de l'Académie des Sciences de Paris (1771).
- [22] R. L. Wilson, A method for the determination of the Galois group, Amer. Math. Soc. (1949). MR39689
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.