Construction of a deterministic ω -automaton using derivatives

Roman R. Redziejowski

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 2, page 133-158
  • ISSN: 0988-3754

How to cite

top

Redziejowski, Roman R.. "Construction of a deterministic $\omega $-automaton using derivatives." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.2 (1999): 133-158. <http://eudml.org/doc/92596>.

@article{Redziejowski1999,
author = {Redziejowski, Roman R.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {-regular language; Safra's algorithm},
language = {eng},
number = {2},
pages = {133-158},
publisher = {EDP-Sciences},
title = {Construction of a deterministic $\omega $-automaton using derivatives},
url = {http://eudml.org/doc/92596},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Redziejowski, Roman R.
TI - Construction of a deterministic $\omega $-automaton using derivatives
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 2
SP - 133
EP - 158
LA - eng
KW - -regular language; Safra's algorithm
UR - http://eudml.org/doc/92596
ER -

References

top
  1. [1] V. Antimirov, Partial derivatives of regular expressions and finite automata constructions. In STACS 95, E.W. Mayr and C. Puech, Eds., Springer-Verlag (1995) 455-466. MR1379579
  2. [2] J. A. Brzozowski, Derivatives of regular expressions. J. Assoc. Comput. Mach. 11 (1964) 481-494. Zbl0225.94044MR174434
  3. [3] J. A. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10 (1980) 19-35. Zbl0415.68023MR549752
  4. [4] J. H. Conway, Regular Algebra and Finite Machines. Chapman and Hall (1971). Zbl0231.94041
  5. [5] D. Park, Concurrency and automata on infinite sequences, in Proc. 5th GI Conference, Karlsruhe, Springer-Verlag, Lecture Notes in Computer Science 104 (1981) 167-183. Zbl0457.68049
  6. [6] D. Perrin, Finite automata, in Handbook of Theoretical Computer Science, J. van Leeuven, Ed., B, Elsevier Science Publishers (1990) 1-57. Zbl0900.68312MR1127186
  7. [7] D. Perrin and J.-E. Pin, Mots infinis. Internal report LITP 93.40, Laboratoire Informatique Théorique et Programmation, Institut Blaise Pascal, 4 Place Jussieu, F-75252 Paris Cedex 05 (1993). 
  8. [8] J.-E. Pin, Varieties of Formal Languages. North Oxford Academic (1986). Zbl0655.68095MR912694
  9. [9] R. R. Redziejowski, The theory of general events and its application to parallel programming. Technical paper TP 18.220, IBM Nordic Laboratory, Lidingö, Sweden (1972). 
  10. [10] S. Safra, On the complexity of ω-automata, in Proc. 29th Annual Symposium on Foundations of Computer Science IEEE (1988) 319-327. 
  11. [11] L. Staiger, Finite-state ω-languages. J. Comput. System Sci. 27 (1983) 434-448. Zbl0541.68052MR727390
  12. [12] L. Staiger, The entropy of finite-state ω-languages. Problems of Control and Information Theory 14 (1985) 383-392. Zbl0582.94012MR820702
  13. [13] L. Staiger, ω-languages. In Handbook of Formal Languages, G. Rozenberg and A. Salomaa, Eds., 3, Springer-Verlag (1997) 339-387. MR1470023
  14. [14] W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science, J. van Leeuven, Ed., B, Elsevier Science Publishers (1990) 133-191. Zbl0900.68316MR1127189

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.