Construction of a deterministic -automaton using derivatives
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 2, page 133-158
- ISSN: 0988-3754
Access Full Article
topHow to cite
topRedziejowski, Roman R.. "Construction of a deterministic $\omega $-automaton using derivatives." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.2 (1999): 133-158. <http://eudml.org/doc/92596>.
@article{Redziejowski1999,
author = {Redziejowski, Roman R.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {-regular language; Safra's algorithm},
language = {eng},
number = {2},
pages = {133-158},
publisher = {EDP-Sciences},
title = {Construction of a deterministic $\omega $-automaton using derivatives},
url = {http://eudml.org/doc/92596},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Redziejowski, Roman R.
TI - Construction of a deterministic $\omega $-automaton using derivatives
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 2
SP - 133
EP - 158
LA - eng
KW - -regular language; Safra's algorithm
UR - http://eudml.org/doc/92596
ER -
References
top- [1] V. Antimirov, Partial derivatives of regular expressions and finite automata constructions. In STACS 95, E.W. Mayr and C. Puech, Eds., Springer-Verlag (1995) 455-466. MR1379579
- [2] J. A. Brzozowski, Derivatives of regular expressions. J. Assoc. Comput. Mach. 11 (1964) 481-494. Zbl0225.94044MR174434
- [3] J. A. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10 (1980) 19-35. Zbl0415.68023MR549752
- [4] J. H. Conway, Regular Algebra and Finite Machines. Chapman and Hall (1971). Zbl0231.94041
- [5] D. Park, Concurrency and automata on infinite sequences, in Proc. 5th GI Conference, Karlsruhe, Springer-Verlag, Lecture Notes in Computer Science 104 (1981) 167-183. Zbl0457.68049
- [6] D. Perrin, Finite automata, in Handbook of Theoretical Computer Science, J. van Leeuven, Ed., B, Elsevier Science Publishers (1990) 1-57. Zbl0900.68312MR1127186
- [7] D. Perrin and J.-E. Pin, Mots infinis. Internal report LITP 93.40, Laboratoire Informatique Théorique et Programmation, Institut Blaise Pascal, 4 Place Jussieu, F-75252 Paris Cedex 05 (1993).
- [8] J.-E. Pin, Varieties of Formal Languages. North Oxford Academic (1986). Zbl0655.68095MR912694
- [9] R. R. Redziejowski, The theory of general events and its application to parallel programming. Technical paper TP 18.220, IBM Nordic Laboratory, Lidingö, Sweden (1972).
- [10] S. Safra, On the complexity of ω-automata, in Proc. 29th Annual Symposium on Foundations of Computer Science IEEE (1988) 319-327.
- [11] L. Staiger, Finite-state ω-languages. J. Comput. System Sci. 27 (1983) 434-448. Zbl0541.68052MR727390
- [12] L. Staiger, The entropy of finite-state ω-languages. Problems of Control and Information Theory 14 (1985) 383-392. Zbl0582.94012MR820702
- [13] L. Staiger, ω-languages. In Handbook of Formal Languages, G. Rozenberg and A. Salomaa, Eds., 3, Springer-Verlag (1997) 339-387. MR1470023
- [14] W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science, J. van Leeuven, Ed., B, Elsevier Science Publishers (1990) 133-191. Zbl0900.68316MR1127189
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.