Normalisation of the theory of Cartesian closed categories and conservativity of extensions of
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 3, page 227-257
- ISSN: 0988-3754
Access Full Article
topHow to cite
topPreller, Anne, and Duroux, P.. "Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.3 (1999): 227-257. <http://eudml.org/doc/92601>.
@article{Preller1999,
author = {Preller, Anne, Duroux, P.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Cartesian closed categories; simply typed lambda calculus; rewrite system; graph of generators; inductive definition of normal terms; decidability; functional completeness},
language = {eng},
number = {3},
pages = {227-257},
publisher = {EDP-Sciences},
title = {Normalisation of the theory $\mathbf \{T\}$ of Cartesian closed categories and conservativity of extensions $mathbf\{T\}[x]$ of $mathbf\{T\}$},
url = {http://eudml.org/doc/92601},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Preller, Anne
AU - Duroux, P.
TI - Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 3
SP - 227
EP - 257
LA - eng
KW - Cartesian closed categories; simply typed lambda calculus; rewrite system; graph of generators; inductive definition of normal terms; decidability; functional completeness
UR - http://eudml.org/doc/92601
ER -
References
top- [1] T. Altenkirch, M. Hofmann and T. Streicher, Categorical reconstruction of a reduction free normalisation proof, preliminary version, P. Dybjer and R. Pollacks, Eds., Proceedings CTCS '95, Springer, Lecture Notes in Computer Science 953 (1995) 182-199. MR1463721
- [2] U. Berger and H. Schwichtenberg, An inverse to the evaluation functional for typed λ-calculus, in Proc. of the 6th Annual IEEE Symposium of Logic in Computer Science (1991) 203-211.
- [3] D. Cubric', Embedding of a free Cartesian Closed Category in the Category of Sets. J. Pure and Applied Algebra (to appear). Zbl0898.18004MR1600522
- [4] D. Cubric', P. Dybjer and P. Scott, Normalization and the Yoneda Embedding, MSCS 8 (1998) 153-192. Zbl0918.03012MR1618366
- [5] R. Di Cosmo, Isomorphisms of Types, Birkhaeuser (1995). Zbl0819.03006
- [6] K. Došen and Z. Petric', The maximality of Cartesian Categories, Rapport Institut de Recherche de Toulouse, CNRS, 97-42-R (1997). Zbl0978.18001
- [7] J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press (1989). Zbl0596.03002MR856915
- [8] A. Obtulowicz, Algebra of constructions I. The word problem for partial algebras. Inform. and Comput. 73 (1987) 29-173. Zbl0653.03010MR883492
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.