Non-looping string rewriting

Alfons Geser; Hans Zantema

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 3, page 279-301
  • ISSN: 0988-3754

How to cite

top

Geser, Alfons, and Zantema, Hans. "Non-looping string rewriting." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.3 (1999): 279-301. <http://eudml.org/doc/92604>.

@article{Geser1999,
author = {Geser, Alfons, Zantema, Hans},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {string rewriting reductions; loops},
language = {eng},
number = {3},
pages = {279-301},
publisher = {EDP-Sciences},
title = {Non-looping string rewriting},
url = {http://eudml.org/doc/92604},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Geser, Alfons
AU - Zantema, Hans
TI - Non-looping string rewriting
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 3
SP - 279
EP - 301
LA - eng
KW - string rewriting reductions; loops
UR - http://eudml.org/doc/92604
ER -

References

top
  1. [1] S. Adjan and G. Oganesjan, Problems of equality and divisibility in semigroups with a single defining relation. Mat. Zametki 41 (1987) 412-421. Zbl0617.20035
  2. [2] R. Book and F. Otto, String-rewriting systems. Texts and Monographs in Computer Science. Springer, New York (1993). Zbl0832.68061MR1215932
  3. [3] N. Dershowitz, Termination of linear rewriting Systems. In Proc. of the 8th International Colloquium on Automata, Languages and Programming (ICALP81), Springer, Lecture Notes in Computer Science 115 (1981) 448-458. Zbl0465.68009MR826061
  4. [4] N. Dershowitz, Termination of rewriting. J. Symb. Comput. 3 (1987) 69-115; Corrigendum 4 (1987) 409-410. Zbl0637.68035MR893186
  5. [5] N. Dershowitz and C. Hoot, Natural termination. Theoret. Comput. Sci. 142 (1995) 179-207. Zbl0873.68103MR1334808
  6. [6] M. Ferreira and H. Zantema, Dummy elimination: Making termination easier. In Proc. l0th Conf. Fundamentals of Computation Theory, H. Reichel, Ed., Springer, Lecture Notes in Computer Science 965 (1995) 243-252. MR1459181
  7. [7] A. Geser, Termination of one-rule string rewriting Systems l → r where |r| ≤ 9. Tech. Rep., Universität Tübingen, D (Jan. 1998). 
  8. [8] J. V. Guttag, D. Kapur and D. R. Musser, On proving uniform termination and restricted termination of rewriting systems. SIAM J. Comput. 12 (1983) 189-214. Zbl0526.68036MR687810
  9. [9] G. Huet and D. S. Lankford, On the uniform halting problem for term rewriting Systems. Rapport Laboria 283, INRIA (1978). 
  10. [10] M. Jantzen, Confluent string rewriting, Vol. 14 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1988). Zbl1097.68572MR972260
  11. [11] Y. Kobayashi, M. Katsura and K. Shikishima-Tsuji, Termination and derivational complexity of confluent one-rule string rewriting Systems. Tech. Rep., Dept. of Computer Science, Toho University, JP (1997). Zbl1336.68153
  12. [12] W. Kurth, Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel. Dissertation, Technische Universität Clausthal, Germany (1990). Zbl0719.03019
  13. [13] W. Kurth, One-rule semi-Thue Systems with loops of length one, two, or three. RAIRO Theoret. Informatics Appl. 30 (1995) 415-429. Zbl0867.68064
  14. [14] D. S. Lankford and D. R. Musser, A finite termination criterion. Tech. Rep., Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA (1978). 
  15. [15] Y. Matiyasevitch and G. Sénizergues, Decision problems for semi-Thue systems with a few rules. In IEEE Symp. Logic in Computer Sdence'96 (1996). 
  16. [16] R. McNaughton, The uniform halting problem for one-rule Semi-Thue Systems. Tech. Rep. 94-18, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, Aug. 1994. 
  17. See also "Correction to The Uniform Halting Problem for One-rule Semi-Thue Systems", Personal communication (Aug. 1996). 
  18. [17] R. McNaughton, Well-behaved derivations in one-rule Semi-Thue Systems. Tech. Rep. 95-15, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (Nov. 1995). 
  19. [18] R. McNaughton, Semi-Thue Systems with an inhibitor. Tech. Rep. 97-5, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (1 1997). Zbl0981.68073
  20. [19] F. Otto, The undecidability of self-embedding for finite semi-Thue and Thue Systems. Theoret. Comput. Sci. 47 (1986) 225-232. Zbl0624.03032MR881214
  21. [20] B.K. Rosen, Tree-manipulating Systems and Church-Rosser Theorems.J. ACM 20 (1973). 160-187. Zbl0267.68013MR331850
  22. [21] K. Shikishima-Tsuji, M. Katsura and Y. Kobayashi, On termination of confluent one-rule string rewriting Systems. Inform. Process, Lett. 61 (1997), 91-96. Zbl1336.68153MR1439874
  23. [22] C. Wrathall, Confluence of one-rule Thue Systems. In Word Equations and Related Topics, K.U. Schulz, Ed., Springer, Lecture Notes in Computer Science 572 (1991). MR1232039
  24. [23] H. Zantema and A. Geser, A complete characterization of termination of 0p1q → lr0s. Applicable Algebra in Engineering, Communication, and Computing. In print. Zbl0962.68086
  25. [24] H. Zantema and A. Geser, A complete characterization of termination of 0p1q → lr0s. In Proc. of the 6th Conference on Rewriting Techniques and Applications, J. Hsiang, Ed., Springer, Lecture Notes in Computer Science 914 (1995) 41-55. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.