Non-looping string rewriting
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)
- Volume: 33, Issue: 3, page 279-301
- ISSN: 0988-3754
Access Full Article
topHow to cite
topGeser, Alfons, and Zantema, Hans. "Non-looping string rewriting." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.3 (1999): 279-301. <http://eudml.org/doc/92604>.
@article{Geser1999,
author = {Geser, Alfons, Zantema, Hans},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {string rewriting reductions; loops},
language = {eng},
number = {3},
pages = {279-301},
publisher = {EDP-Sciences},
title = {Non-looping string rewriting},
url = {http://eudml.org/doc/92604},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Geser, Alfons
AU - Zantema, Hans
TI - Non-looping string rewriting
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 3
SP - 279
EP - 301
LA - eng
KW - string rewriting reductions; loops
UR - http://eudml.org/doc/92604
ER -
References
top- [1] S. Adjan and G. Oganesjan, Problems of equality and divisibility in semigroups with a single defining relation. Mat. Zametki 41 (1987) 412-421. Zbl0617.20035
- [2] R. Book and F. Otto, String-rewriting systems. Texts and Monographs in Computer Science. Springer, New York (1993). Zbl0832.68061MR1215932
- [3] N. Dershowitz, Termination of linear rewriting Systems. In Proc. of the 8th International Colloquium on Automata, Languages and Programming (ICALP81), Springer, Lecture Notes in Computer Science 115 (1981) 448-458. Zbl0465.68009MR826061
- [4] N. Dershowitz, Termination of rewriting. J. Symb. Comput. 3 (1987) 69-115; Corrigendum 4 (1987) 409-410. Zbl0637.68035MR893186
- [5] N. Dershowitz and C. Hoot, Natural termination. Theoret. Comput. Sci. 142 (1995) 179-207. Zbl0873.68103MR1334808
- [6] M. Ferreira and H. Zantema, Dummy elimination: Making termination easier. In Proc. l0th Conf. Fundamentals of Computation Theory, H. Reichel, Ed., Springer, Lecture Notes in Computer Science 965 (1995) 243-252. MR1459181
- [7] A. Geser, Termination of one-rule string rewriting Systems l → r where |r| ≤ 9. Tech. Rep., Universität Tübingen, D (Jan. 1998).
- [8] J. V. Guttag, D. Kapur and D. R. Musser, On proving uniform termination and restricted termination of rewriting systems. SIAM J. Comput. 12 (1983) 189-214. Zbl0526.68036MR687810
- [9] G. Huet and D. S. Lankford, On the uniform halting problem for term rewriting Systems. Rapport Laboria 283, INRIA (1978).
- [10] M. Jantzen, Confluent string rewriting, Vol. 14 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1988). Zbl1097.68572MR972260
- [11] Y. Kobayashi, M. Katsura and K. Shikishima-Tsuji, Termination and derivational complexity of confluent one-rule string rewriting Systems. Tech. Rep., Dept. of Computer Science, Toho University, JP (1997). Zbl1336.68153
- [12] W. Kurth, Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel. Dissertation, Technische Universität Clausthal, Germany (1990). Zbl0719.03019
- [13] W. Kurth, One-rule semi-Thue Systems with loops of length one, two, or three. RAIRO Theoret. Informatics Appl. 30 (1995) 415-429. Zbl0867.68064
- [14] D. S. Lankford and D. R. Musser, A finite termination criterion. Tech. Rep., Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA (1978).
- [15] Y. Matiyasevitch and G. Sénizergues, Decision problems for semi-Thue systems with a few rules. In IEEE Symp. Logic in Computer Sdence'96 (1996).
- [16] R. McNaughton, The uniform halting problem for one-rule Semi-Thue Systems. Tech. Rep. 94-18, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, Aug. 1994.
- See also "Correction to The Uniform Halting Problem for One-rule Semi-Thue Systems", Personal communication (Aug. 1996).
- [17] R. McNaughton, Well-behaved derivations in one-rule Semi-Thue Systems. Tech. Rep. 95-15, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (Nov. 1995).
- [18] R. McNaughton, Semi-Thue Systems with an inhibitor. Tech. Rep. 97-5, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (1 1997). Zbl0981.68073
- [19] F. Otto, The undecidability of self-embedding for finite semi-Thue and Thue Systems. Theoret. Comput. Sci. 47 (1986) 225-232. Zbl0624.03032MR881214
- [20] B.K. Rosen, Tree-manipulating Systems and Church-Rosser Theorems.J. ACM 20 (1973). 160-187. Zbl0267.68013MR331850
- [21] K. Shikishima-Tsuji, M. Katsura and Y. Kobayashi, On termination of confluent one-rule string rewriting Systems. Inform. Process, Lett. 61 (1997), 91-96. Zbl1336.68153MR1439874
- [22] C. Wrathall, Confluence of one-rule Thue Systems. In Word Equations and Related Topics, K.U. Schulz, Ed., Springer, Lecture Notes in Computer Science 572 (1991). MR1232039
- [23] H. Zantema and A. Geser, A complete characterization of termination of 0p1q → lr0s. Applicable Algebra in Engineering, Communication, and Computing. In print. Zbl0962.68086
- [24] H. Zantema and A. Geser, A complete characterization of termination of 0p1q → lr0s. In Proc. of the 6th Conference on Rewriting Techniques and Applications, J. Hsiang, Ed., Springer, Lecture Notes in Computer Science 914 (1995) 41-55.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.