Final dialgebras : from categories to allegories

Roland Backhouse; Paul Hoogendijk

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 4-5, page 401-426
  • ISSN: 0988-3754

How to cite

top

Backhouse, Roland, and Hoogendijk, Paul. "Final dialgebras : from categories to allegories." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.4-5 (1999): 401-426. <http://eudml.org/doc/92612>.

@article{Backhouse1999,
author = {Backhouse, Roland, Hoogendijk, Paul},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {coinductive types},
language = {eng},
number = {4-5},
pages = {401-426},
publisher = {EDP-Sciences},
title = {Final dialgebras : from categories to allegories},
url = {http://eudml.org/doc/92612},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Backhouse, Roland
AU - Hoogendijk, Paul
TI - Final dialgebras : from categories to allegories
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4-5
SP - 401
EP - 426
LA - eng
KW - coinductive types
UR - http://eudml.org/doc/92612
ER -

References

top
  1. [1] C. J. Aarts, R. C. Backhouse, P. Hoogendijk, T. S. Voermans and J. van der Woude, A relational theory of datatypes. Available via World-Wide Web at http://www.win.tue.nl/cs/wp/papers (September 1992). 
  2. [2] P. Aczel, Non Well-Founded Sets, Number 14 in CSLI Lecture Notes. Center for the Study of Language and Information (Stanford, California, 1988). Zbl0668.04001MR940014
  3. [3] P. Aczel and N. Mendler, A final coalgebra theorem, D.H. Pitt, Ed., Category Theory and Computer Science. Springer Verlag, Lecture Notes in Comput. Sci. (1989) 357-365. MR1031572
  4. [4] R. C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T. S. Voermans and J. van der Woude, Polynomial relators, M. Nivat, C.S. Rattray, T. Rus and G. Scollo, Eds., in Proc. of the 2nd Conference on Algebraic Methodology and Software Technology, AMAST'91. Springer-Verlag, Workshops in Computing (1992) 303-326. 
  5. [5] R. Bird, O. de Moor and P. Hoogendijk, Generic functional programming with types and relations. J. Funct. Programming 6 (1996) 1-28. Zbl0848.68013MR1391639
  6. [6] R. S. Bird and O. de Moor, Algebra of Programming. Prentice-Hall International (1996). Zbl0867.68042
  7. [7] H. Doornbos, Reductivity arguments and program construction. Ph. D. Thesis, Eindhoven University of Technology, Department of Mathematics and Computing Science (1996). Zbl0852.68007MR1392220
  8. [8] P. J. Freyd and A. Ščcedrov, Categories, Allegories. North-Holland (1990). Zbl0698.18002MR1071176
  9. [9] T. Hagino, A typed lambda calculus with categorical type constructors, D. H. Pitt, A. Poigne and D. E. Rydeheard, Eds., Category Theory and Computer Science. Springer-Verlag, Lecture Notes in Comput Sci. 283(1988) 140-57. Zbl0643.03010MR925228
  10. [10] P. Hoogendijk, A Generic Theory of Datatypes. Ph. D. Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology (1997). Zbl0900.68164MR1459715
  11. [11] P. Hoogendijk and R. Backhouse, When do datatypes commute? E. Moggi and G. Rosolini, Eds., Category Theory and Computer Science, 7th International Conference. Springer-Verlag, Lecture Notes in Comput Sci. 1290 (1997) 242-260. Zbl0884.68086MR1641389
  12. [12] P. Hoogendijk and O. de Moor, What is a datatype? Technical Report 96/16, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1996. J. Funct. Programming, to appear. 
  13. [13] B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 62 (1997) 222-259. Zbl0880.68070
  14. [14] P. Jansson and J. Jeuring, PolyP - a polytypic programming language extension. In POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press (1997) 470-482. 
  15. [15] C. B. Jay, A semantics for shape. Sci. Comput Programming 25 (1995) 251-283. Zbl0853.68119MR1374365
  16. [16] C. B. Jay and J. R. B. Cockett, Shapely types and shape polymorphisim, D. Sannella, Ed., SOP '94' 5th European Symposium on Programming. Springer Verlag, Lecture Notes in Comput. Sci. (1994) 302-316. MR1300462
  17. [17] J. Jeuring, Polytypic pattern matching. In Conference Record of FPCA '95, SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages and Computer Architecture (1995) 238-248. 
  18. [18] J. Jeuring and P. Jansson, Polytypic programming, J. Launchbury, E. Meijer and T. Sheard, Eds., Proceedings of the Second International Summer School on Advanced Functional Programming Techniques. Springer-Verlag, Lecture Notes in Comput. Sci. 1129 (1996) 68-114. 
  19. [19] J. Lambek, A fixpoint theorem for complete categories. Math. Z. 103 (1968) 151-161. Zbl0149.26105MR224671
  20. [20] J. Lambek, Subequalizers. Canad. Math. Bull. 13 (1970) 337-349. Zbl0201.02302MR274552
  21. [21] S. MacLane, Categories for the Working Mathematician. Springer-Verlag, New York (1971). Zbl0232.18001MR354798
  22. [22] L. Meertens, Calculate polytypically! H. Kuchen and S. Doaitse Swierstra, Eds., Proceedings of the Eighth International Symposium PLILP '96 Programming Languages: Implementations, Logics and Programs. Springer Verlag, Lecture Notes in Comput. Sci. 1140 (1996) 1-16. 
  23. [23] E. Meijer, M. M. Fokkinga and R. Paterson, Functional programming with bananas, lenses, envelopes and barbed wire. In FPCA91: Functional Programming Languages and Computer Architecture. Springer-Verlag, Lecture Notes in Comput. Sci. 523 (1991) 124-144. MR1148099
  24. [24] S.D. Swierstra and O. de Moor, Virtual data structures, H. Partsch, B. Möller and S. Schuman, Eds., Formal Program Development. Springer-Verlag, Lecture Notes in Comput. Sci. 755 (1993) 355-371. MR1298904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.