A finite axiomatization of nondeterministic regular expressions

Flavio Corradini; Rocco De Nicola; Anna Labella

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1999)

  • Volume: 33, Issue: 4-5, page 447-465
  • ISSN: 0988-3754

How to cite

top

Corradini, Flavio, De Nicola, Rocco, and Labella, Anna. "A finite axiomatization of nondeterministic regular expressions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 33.4-5 (1999): 447-465. <http://eudml.org/doc/92614>.

@article{Corradini1999,
author = {Corradini, Flavio, De Nicola, Rocco, Labella, Anna},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {regular languages; regular expressions},
language = {eng},
number = {4-5},
pages = {447-465},
publisher = {EDP-Sciences},
title = {A finite axiomatization of nondeterministic regular expressions},
url = {http://eudml.org/doc/92614},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Corradini, Flavio
AU - De Nicola, Rocco
AU - Labella, Anna
TI - A finite axiomatization of nondeterministic regular expressions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4-5
SP - 447
EP - 465
LA - eng
KW - regular languages; regular expressions
UR - http://eudml.org/doc/92614
ER -

References

top
  1. [1] L. Aceto and W. Fokkink, An Equational Axiomatization for multi-exit iteration. Inform. and Comput. 134 (1997) 121-158. Zbl0881.68069MR1468880
  2. [2] L. Aceto, W. Fokkink, R. van Glabbeek and A. Ingólfsdóttir, Axiomatizing prefix iteration with silent steps. Inform. and Comput 127 (1996) 26-40. Zbl0855.68030MR1394553
  3. [3] L. Aceto, W. Fokkink and A. Ingólfsdóttir, A managerie of non-finitely based process semantics over BPA*: From ready simulation to completed traces. Research Report, BRICS, RS-96-23 (1996). 
  4. [4] J. C. M. Baeten and J. A. Bergstra, Process Algebra with a Zero Object, in Proc. of Concu'90. Springer, Lecture Notes in Comput Sci. 458 (1990) 83-98. MR1082157
  5. [5] L. Bernatsky, S. L. Bloom, Z. Ésik and Gh. Stefanescu, Equational theories of relations and regular sets, in Proc. of Words, Languages and Combinatorics, Kyoto, 1992. Word Scientific, (1994) 40-48. Zbl0874.08002MR1351278
  6. [6] S. L. Bloom and Z. Ésik, Iteration Algebras of Finite State Process Behaviours. Manuscript. 
  7. [7] S. L. Bloom, Z. Ésik and D. Taubner, Iteration theories of synchronization trees. Inform. and Comput. 102 (1993) 1-55. Zbl0780.68088MR1201904
  8. [8] M. Boffa, Une remarque sur les systèmes complets d'identités rationelles. Theoret. Informatics Appl. 24 (1990) 419-423. Zbl0701.68059MR1079723
  9. [9] J. H. Conway, Regular Algebra and Finite Machines. Chapman and Hall, London (1971). Zbl0231.94041
  10. [10] F. Corradini, R. De Nicola and A. Labella, Fully Abstract Models for Nondeterministic Regular Expressions, in Proc. of Concur'95. Springer Verlag, Lecture Notes in Comput. Sci. 962 (1995) 130-144. 
  11. [11] F. Corradini, R. De Nicola and A. Labella, Models of Nondeterministic Regular Expressions. J. Comput. System Sci., to appear. Zbl0958.68090MR1726770
  12. [12] R. De Nicola and A. Labella, Tree Morphisms and Bisimulations, in Proc. of MFCS'98 Workshop on Concurrency. Elsevier, Amsterdam, Electron. Notes Theoret. Comput. Sci. 18 (1998). Zbl1206.68214MR1672349
  13. [13] R. De Nicola and A. Labella, A Completeness Theorem for Nondeterministic Kleene Algebras, in Proc. of MFCS'94. Springer, Lecture Notes in Comput. Sci. 841 (1994) 536-545. 
  14. [14] W. Fokkink, A complete equational axiomatization for prefix iteration. Inform. Process. Lett. 52 (1994) 333-337. Zbl0938.68697MR1307752
  15. [15] W. Fokkink, On the completeness of the Equations for the Kleene Star in Bisimulation, in Proc. of AMAST'96. Springer, Lecture Notes in Comput. Sci. 1101 (1996) 180-194. Zbl0886.03032MR1480695
  16. [16] W. Fokkink, Axiomatizations for the perpetual loop in Process Algebras, in Proc. of ICALP'97. Springer, Lecture Notes in Comput. Sci. 1256 (1997) 571-581. MR1616217
  17. [17] W. Fokkink and H. Zantema, Basic process algebra with iteration: Completeness of its equational axioms. Comput. J. 37 (1994) 259-267. 
  18. [18] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall (1989). Zbl0637.68007
  19. [19] S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata, in Automata Studies, Shannon and McCarthy, Ed. Princeton Univ. Pr. (1956) 3-41. MR77478
  20. [20] S. Kasangian and A. Labella, Enriched Categorical Semantics for Distributed Calculi. J. Pure Appl. Algebra 83 (1992) 295-321. Zbl0777.18007MR1194841
  21. [21] D. Kozen, A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Inform. and Comput 110 (1994) 366-390. Zbl0806.68082MR1276741
  22. [22] D. Krob, Complete Systems of B-rational identities. Theoret. Comput. Sci. 89 (1991) 207-343. Zbl0737.68053MR1133622
  23. [23] W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer, Berlin, Monogr. Theoret. Comput. Sci. EATCS Ser. 5 (1986). Zbl0582.68002MR817983
  24. [24] R. Milner, A Calculus of Communicating Systems. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 94 (1980). Zbl0452.68027MR590046
  25. [25] R. Milner, A complete inference System for a class of regular behaviors. J. Comput. System Sci. 28 (1984) 439-466. Zbl0562.68065MR752442
  26. [26] R. Milner, Communication and Concurrency. Prentice Hall (1989). Zbl0683.68008
  27. [27] R. N. Moll, M. A. Arbib and A. J. Kfoury, An Introduction to Formal Language Theory. Springer-Verlag, Berlin (1987). Zbl0655.68002MR956253
  28. [28] D. Park, Concurrency and Automata on Infinite sequences, in Proc. GI. Springer, Lecture Notes in Comput. Sci. 104 (1981) 167-183. Zbl0457.68049
  29. [29] B. C. Pierce, Basic Category Theory for Computer Scientists. The MIT Press (1991). Zbl0875.18001MR1120026
  30. [30] V. N. Redko, On defining relations for the algebra of regular events (Russian). Ukrain. Mat. Z. 16 (1964) 120-126. MR179033
  31. [31] J. Sakarovitch, Kleene's theorem revisited, in Proc. of Trends, techniques, and problems in theoretical computer science. Springer, Lecture Notes in Comput. Sci. 281 (1986) 39-50. Zbl0637.68096MR921502
  32. [32] A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM 13 (1966) 158-169. Zbl0149.24902MR189995
  33. [33] P. Sewell, Bisimulation is not finitely (first order) equationally axiomatisable, in Proc. of LICS'94 (1994). 
  34. [34] M. B. Smith and G. D. Piotkin, The category-Theoretic Solution of Recursive Domain Equation. SIAM J. Comput. 11 (1982) 762-783. Zbl0493.68022MR677666
  35. [35] D. R. Troeger, Step bisimulation is pomset equivalence on a parallel language without explicit internal choice. Math. Structures Comput. Sci. 3 (1993) 25-62. Zbl0806.68044MR1206871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.