Succession rules and deco polyominoes

Elena Barcucci; Sara Brunetti; Francesco Del Ristoro

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 1, page 1-14
  • ISSN: 0988-3754

How to cite

top

Barcucci, Elena, Brunetti, Sara, and Del Ristoro, Francesco. "Succession rules and deco polyominoes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.1 (2000): 1-14. <http://eudml.org/doc/92621>.

@article{Barcucci2000,
author = {Barcucci, Elena, Brunetti, Sara, Del Ristoro, Francesco},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {deco polyominoes; enumeration; succession rules; Stirling numbers; Narayana and odd index Fibonacci numbers; generating functions},
language = {eng},
number = {1},
pages = {1-14},
publisher = {EDP-Sciences},
title = {Succession rules and deco polyominoes},
url = {http://eudml.org/doc/92621},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Barcucci, Elena
AU - Brunetti, Sara
AU - Del Ristoro, Francesco
TI - Succession rules and deco polyominoes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 1
SP - 1
EP - 14
LA - eng
KW - deco polyominoes; enumeration; succession rules; Stirling numbers; Narayana and odd index Fibonacci numbers; generating functions
UR - http://eudml.org/doc/92621
ER -

References

top
  1. [1] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, ECO: A methodology for the Enumeration of Combinatorial Objects. J. Differ. Equations Appl. 5 (1999) 435-490. Zbl0944.05005MR1717162
  2. [2] E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation. Theoret. Comput. Sci. 159 (1996) 29-42. Zbl0872.68177MR1398689
  3. [3] M. Bousquet-Mélou, q-énumération de polyominos convexes. Publication du LACIM, No. 9 Montréal (1991). 
  4. [4] M. Bousquet-Mélou, A method for enumeration of various classes of column-convex polygons. Discrete Math. 151 (1996) 1-25. Zbl0858.05006MR1395445
  5. [5] M. Delest, D. Gouyou-Beauchamps and B. Vauquelin, Enumeration of parallelogram polyominoes with given bound and site perimeter. Graphs Combin. 3 (1987) 325-339. Zbl0651.05027MR914833
  6. [6] M. Delest and X. G. Viennot, Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34 (1984) 169-206. Zbl0985.68516MR774044
  7. [7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley (1989). Zbl0668.00003MR1397498
  8. [8] F. K. Hwang and C. L. Mallows, Enumerating Nested and Consecutive Partitions. J. Combin. Theory Ser. A 70 (1995) 323-333. Zbl0819.05005MR1329396
  9. [9] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison Wesley, Reading Mass (1968). Zbl0191.17903MR378456
  10. [10] G. Kreweras, Joint distributions of three descriptive parameters of bridges, edited by G. Labelle and P. Leroux, Combinatoire Énumérative, Montréal 1985. Springer, Berlin, Lecture Notes in Math. 1234 (1986) 177-191. Zbl0612.05012MR927765
  11. [11] T. W. Narayana, Sur les treillis formés par les partitions d'un entier. C.R. Acad. Sci. Paris 240 (1955) 1188-1189. Zbl0064.12705MR70648
  12. [12] N. J. A. Sloane and S. Plouffe, The encyclopedia of integer sequences. Academic Press (1995). Zbl0845.11001MR1327059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.