Succession rules and deco polyominoes
Elena Barcucci; Sara Brunetti; Francesco Del Ristoro
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)
- Volume: 34, Issue: 1, page 1-14
- ISSN: 0988-3754
Access Full Article
topHow to cite
topBarcucci, Elena, Brunetti, Sara, and Del Ristoro, Francesco. "Succession rules and deco polyominoes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.1 (2000): 1-14. <http://eudml.org/doc/92621>.
@article{Barcucci2000,
author = {Barcucci, Elena, Brunetti, Sara, Del Ristoro, Francesco},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {deco polyominoes; enumeration; succession rules; Stirling numbers; Narayana and odd index Fibonacci numbers; generating functions},
language = {eng},
number = {1},
pages = {1-14},
publisher = {EDP-Sciences},
title = {Succession rules and deco polyominoes},
url = {http://eudml.org/doc/92621},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Barcucci, Elena
AU - Brunetti, Sara
AU - Del Ristoro, Francesco
TI - Succession rules and deco polyominoes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 1
SP - 1
EP - 14
LA - eng
KW - deco polyominoes; enumeration; succession rules; Stirling numbers; Narayana and odd index Fibonacci numbers; generating functions
UR - http://eudml.org/doc/92621
ER -
References
top- [1] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, ECO: A methodology for the Enumeration of Combinatorial Objects. J. Differ. Equations Appl. 5 (1999) 435-490. Zbl0944.05005MR1717162
- [2] E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation. Theoret. Comput. Sci. 159 (1996) 29-42. Zbl0872.68177MR1398689
- [3] M. Bousquet-Mélou, q-énumération de polyominos convexes. Publication du LACIM, No. 9 Montréal (1991).
- [4] M. Bousquet-Mélou, A method for enumeration of various classes of column-convex polygons. Discrete Math. 151 (1996) 1-25. Zbl0858.05006MR1395445
- [5] M. Delest, D. Gouyou-Beauchamps and B. Vauquelin, Enumeration of parallelogram polyominoes with given bound and site perimeter. Graphs Combin. 3 (1987) 325-339. Zbl0651.05027MR914833
- [6] M. Delest and X. G. Viennot, Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34 (1984) 169-206. Zbl0985.68516MR774044
- [7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley (1989). Zbl0668.00003MR1397498
- [8] F. K. Hwang and C. L. Mallows, Enumerating Nested and Consecutive Partitions. J. Combin. Theory Ser. A 70 (1995) 323-333. Zbl0819.05005MR1329396
- [9] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison Wesley, Reading Mass (1968). Zbl0191.17903MR378456
- [10] G. Kreweras, Joint distributions of three descriptive parameters of bridges, edited by G. Labelle and P. Leroux, Combinatoire Énumérative, Montréal 1985. Springer, Berlin, Lecture Notes in Math. 1234 (1986) 177-191. Zbl0612.05012MR927765
- [11] T. W. Narayana, Sur les treillis formés par les partitions d'un entier. C.R. Acad. Sci. Paris 240 (1955) 1188-1189. Zbl0064.12705MR70648
- [12] N. J. A. Sloane and S. Plouffe, The encyclopedia of integer sequences. Academic Press (1995). Zbl0845.11001MR1327059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.