Approximation algorithms for the traveling salesman problem with range condition

D. Arun Kumar; C. Pandu Rangan

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 3, page 173-181
  • ISSN: 0988-3754

How to cite

top

Arun Kumar, D., and Pandu Rangan, C.. "Approximation algorithms for the traveling salesman problem with range condition." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.3 (2000): 173-181. <http://eudml.org/doc/92631>.

@article{ArunKumar2000,
author = {Arun Kumar, D., Pandu Rangan, C.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {odd degree restricted graphs},
language = {eng},
number = {3},
pages = {173-181},
publisher = {EDP-Sciences},
title = {Approximation algorithms for the traveling salesman problem with range condition},
url = {http://eudml.org/doc/92631},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Arun Kumar, D.
AU - Pandu Rangan, C.
TI - Approximation algorithms for the traveling salesman problem with range condition
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 3
SP - 173
EP - 181
LA - eng
KW - odd degree restricted graphs
UR - http://eudml.org/doc/92631
ER -

References

top
  1. [1] T. Andreae and H.-J. Bandelt, Performance guarantees for approximation algorithms depending on parametrized triangle inequalities. SIAM J. Discrete Math. 8 (1995) 1-16. Zbl0832.90089MR1315955
  2. [2] M. A. Bender and C. Chekuri, Performance guarantees for the TSP with a parametrized triangle inequality, in Proc. WADS'99. Springer, Lecture Notes in Comput. Sci. 1663 (1999) 80-85. Zbl1063.68700MR1734094
  3. [3] H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert and W. Unger, An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle Inequality, in Proc. STACS 2000. Springer, Lecture Notes in Comput. Sci. (to appear). Zbl1028.90044MR1776665
  4. [4] H.-J. Böckenhauer, J. Hromkovič, R. Klasing, S. Seibert and W. Unger, Towards the Notion of Stability of Approximation Algorithms and the Traveling Salesman Problem, in Electronic Colloquium on Computational Complexity. Report No. 31 (1999). Zbl1094.90036
  5. [5] N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration. Carnegie-Mellon University, Pittsburgh (1976). 
  6. [6] J. Edmonds and E. L. Johnson, Matching: A well-solved class of integer linear programs, in Proc. Calgary International conference on Combinatorial Structures and Their Applications. Gordon and Breach (1970) 88-92. Zbl0258.90032MR267898
  7. [7] M. R. Garey, R. L. Graham and D. J. Johnson, Some NP-cornplete geometric problems, in Proc. ACM Symposium on Theory of Computing (1976) 10-22. Zbl0377.68036
  8. [8] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph-matching problems. J. ACM 28 (1991) 815-853. Zbl0799.68145MR1134518
  9. [9] J. Hromkovič, Stability of approximation algorithms for hard optimisation problems, in Proc. SOFSEM'99. Springer-Verlag, Lecture Notes in Comput. Sci. 1725 (1999) 29-46. Zbl0961.65060MR1784516
  10. [10] J. Hromkovič, Stability of approximation algorithms and the knapsack problem, in Jewels are forever, edited by J. Karhumäki, H. Maurer and G. Rozenberg. Springer-Verlag (1999) 238-249. Zbl0945.68074MR1719081
  11. [11] C. H. Papadimitriou, Euclidean TSP is NP-complete. TCS 4 (1977) 237-244. Zbl0386.90057MR455550
  12. [12] C. H. Papadimitriou and M. Yannakakis, The Traveling salesman problem with distances one and two. Math. Oper. Res. 18 (1993) 1-11. Zbl0778.90057MR1250103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.