On the Horton-Strahler number for combinatorial tries

Markus E. Nebel

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 4, page 279-296
  • ISSN: 0988-3754

How to cite

top

Nebel, Markus E.. "On the Horton-Strahler number for combinatorial tries." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.4 (2000): 279-296. <http://eudml.org/doc/92635>.

@article{Nebel2000,
author = {Nebel, Markus E.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Horton-Strahler number; binary tries; binary trees},
language = {eng},
number = {4},
pages = {279-296},
publisher = {EDP-Sciences},
title = {On the Horton-Strahler number for combinatorial tries},
url = {http://eudml.org/doc/92635},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Nebel, Markus E.
TI - On the Horton-Strahler number for combinatorial tries
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 279
EP - 296
LA - eng
KW - Horton-Strahler number; binary tries; binary trees
UR - http://eudml.org/doc/92635
ER -

References

top
  1. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Dover (1970). 
  2. [2] T. M. Apostol, Introduction to Analytic Number Theory. Springer (1976). Zbl0335.10001MR434929
  3. [3] N. G. de Bruijn, D. E. Knuth and S. O. Rice, The Average Height of Planted Plane Trees. Graph Theory and Computing, edited by R.C. Read. Academic Press (1972). Zbl0247.05106MR505710
  4. [4] L. Devroye and P. Kruszewski, On the Horton-Strahler Number for Random Tries. Theoret. Informatics Appl. 30 (1996) 443-456. Zbl0867.68087MR1435732
  5. [5] M. Drmota, Asymptotic Distributions and a Multivariate Darboux Method in Enumeration Problems. J. Combin. Theory Ser. A 67 (1994) 169-184. Zbl0801.60016MR1284406
  6. [6] A. P. Ershov, On Programming of Arithmetic Operations. Comm. ACM 1 (1958 3-6. Zbl0086.33203
  7. [7] P. Flajolet, J. C. Raoult and J. Vuillemin, The Number of Registers required for Evaluating Arithmetic Expressions. Theoret. Comput. Sci. 9 (1979) 99-125. Zbl0407.68057MR535127
  8. [8] P. Flajolet and A. Odlyzko, Singularity Analysis of Generating Functions. SIAM J. Discrete Math. 3 (1990) 216-240. Zbl0712.05004MR1039294
  9. [9] P. Flajolet and H. Prodinger, Register Allocation for Unary-Binary Trees. SIAM J. Comput. 15 (1986) 629-640. Zbl0612.68065MR850413
  10. [10] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: Harmonic sums. Theoret Comput. Sci. 144 (1995) 3-58. Zbl0869.68057MR1337752
  11. [11] J. Françon, Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique. Theoret. Informatics Appl. 18 (1984) 355-364. Zbl0547.68041MR775838
  12. [12] R. E. Horton, Erosioned development of systems and their drainage basins, hydrophysical approach to quantitative morphology. Bull. Geol. Soc. of America 56 (1945) 275-370. 
  13. [13] R. Kemp, The Average Number of Registers Needed to Evaluate a Binary Tree Optimally. Acta Inform. 11 (1979) 363-372. Zbl0395.68059MR533482
  14. [14] R. Kemp, A Note on the Stack Size of Regularly Distributed Binary Trees. BIT 20 (1980) 157-163. Zbl0428.68076MR583031
  15. [15] R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms. Wiley-Teubner Series in Computer Science (1984). Zbl0638.68026MR786659
  16. [16] R. Kemp, On the Stack Ramification of Binary Trees. Random Graphs 2 (1992) 117-138. Zbl0825.68492MR1166611
  17. [17] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd Ed. Addison-Wesley (1997). Zbl0895.68055MR378456
  18. [18] A. Meir, J. W. Moon and J. R. Pounder, On the Order of Random Channel Networks. SIAM J. Algebraic Discrete Math. 1 (1980) 25-33. Zbl0496.94020MR563011
  19. [19] M. E. Nebel, New Results on the Stack Ramification of Binary Trees. J. Autom. Lang. Comb. 2 (1997) 161-175. Zbl0895.68071MR1611168
  20. [20] M. E. Nebel, The Stack-Size of Tries, A Combinatorial Study. Theoret. Comput. Sci. (to appear). Zbl0988.68137MR1871080
  21. [21] M. E. Nebel, The Stack-Size of Uniform Random Tries Revisited (submitted). Zbl0995.68071
  22. [22] A. N. Strahler, Hypsometric (area-altitude) analysis of erosonal topology. Bull. Geol. Soc. of America 63 (1952) 1117-1142. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.