On the Horton-Strahler number for combinatorial tries
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)
- Volume: 34, Issue: 4, page 279-296
- ISSN: 0988-3754
Access Full Article
topHow to cite
topNebel, Markus E.. "On the Horton-Strahler number for combinatorial tries." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.4 (2000): 279-296. <http://eudml.org/doc/92635>.
@article{Nebel2000,
author = {Nebel, Markus E.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Horton-Strahler number; binary tries; binary trees},
language = {eng},
number = {4},
pages = {279-296},
publisher = {EDP-Sciences},
title = {On the Horton-Strahler number for combinatorial tries},
url = {http://eudml.org/doc/92635},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Nebel, Markus E.
TI - On the Horton-Strahler number for combinatorial tries
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 279
EP - 296
LA - eng
KW - Horton-Strahler number; binary tries; binary trees
UR - http://eudml.org/doc/92635
ER -
References
top- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Dover (1970).
- [2] T. M. Apostol, Introduction to Analytic Number Theory. Springer (1976). Zbl0335.10001MR434929
- [3] N. G. de Bruijn, D. E. Knuth and S. O. Rice, The Average Height of Planted Plane Trees. Graph Theory and Computing, edited by R.C. Read. Academic Press (1972). Zbl0247.05106MR505710
- [4] L. Devroye and P. Kruszewski, On the Horton-Strahler Number for Random Tries. Theoret. Informatics Appl. 30 (1996) 443-456. Zbl0867.68087MR1435732
- [5] M. Drmota, Asymptotic Distributions and a Multivariate Darboux Method in Enumeration Problems. J. Combin. Theory Ser. A 67 (1994) 169-184. Zbl0801.60016MR1284406
- [6] A. P. Ershov, On Programming of Arithmetic Operations. Comm. ACM 1 (1958 3-6. Zbl0086.33203
- [7] P. Flajolet, J. C. Raoult and J. Vuillemin, The Number of Registers required for Evaluating Arithmetic Expressions. Theoret. Comput. Sci. 9 (1979) 99-125. Zbl0407.68057MR535127
- [8] P. Flajolet and A. Odlyzko, Singularity Analysis of Generating Functions. SIAM J. Discrete Math. 3 (1990) 216-240. Zbl0712.05004MR1039294
- [9] P. Flajolet and H. Prodinger, Register Allocation for Unary-Binary Trees. SIAM J. Comput. 15 (1986) 629-640. Zbl0612.68065MR850413
- [10] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: Harmonic sums. Theoret Comput. Sci. 144 (1995) 3-58. Zbl0869.68057MR1337752
- [11] J. Françon, Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique. Theoret. Informatics Appl. 18 (1984) 355-364. Zbl0547.68041MR775838
- [12] R. E. Horton, Erosioned development of systems and their drainage basins, hydrophysical approach to quantitative morphology. Bull. Geol. Soc. of America 56 (1945) 275-370.
- [13] R. Kemp, The Average Number of Registers Needed to Evaluate a Binary Tree Optimally. Acta Inform. 11 (1979) 363-372. Zbl0395.68059MR533482
- [14] R. Kemp, A Note on the Stack Size of Regularly Distributed Binary Trees. BIT 20 (1980) 157-163. Zbl0428.68076MR583031
- [15] R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms. Wiley-Teubner Series in Computer Science (1984). Zbl0638.68026MR786659
- [16] R. Kemp, On the Stack Ramification of Binary Trees. Random Graphs 2 (1992) 117-138. Zbl0825.68492MR1166611
- [17] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd Ed. Addison-Wesley (1997). Zbl0895.68055MR378456
- [18] A. Meir, J. W. Moon and J. R. Pounder, On the Order of Random Channel Networks. SIAM J. Algebraic Discrete Math. 1 (1980) 25-33. Zbl0496.94020MR563011
- [19] M. E. Nebel, New Results on the Stack Ramification of Binary Trees. J. Autom. Lang. Comb. 2 (1997) 161-175. Zbl0895.68071MR1611168
- [20] M. E. Nebel, The Stack-Size of Tries, A Combinatorial Study. Theoret. Comput. Sci. (to appear). Zbl0988.68137MR1871080
- [21] M. E. Nebel, The Stack-Size of Uniform Random Tries Revisited (submitted). Zbl0995.68071
- [22] A. N. Strahler, Hypsometric (area-altitude) analysis of erosonal topology. Bull. Geol. Soc. of America 63 (1952) 1117-1142.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.