A lower bound for reversible automata

Pierre-Cyrille Héam

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 5, page 331-341
  • ISSN: 0988-3754

How to cite

top

Héam, Pierre-Cyrille. "A lower bound for reversible automata." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.5 (2000): 331-341. <http://eudml.org/doc/92638>.

@article{Héam2000,
author = {Héam, Pierre-Cyrille},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {reversible automaton; finite automaton},
language = {eng},
number = {5},
pages = {331-341},
publisher = {EDP-Sciences},
title = {A lower bound for reversible automata},
url = {http://eudml.org/doc/92638},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Héam, Pierre-Cyrille
TI - A lower bound for reversible automata
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 5
SP - 331
EP - 341
LA - eng
KW - reversible automaton; finite automaton
UR - http://eudml.org/doc/92638
ER -

References

top
  1. [1] D. Angluin, Inference of reversible languages. J. ACM 29 (1982) 741-765. Zbl0485.68066MR666776
  2. [2] J. Berstel, Transductions and Context-Free Languages. B.G. Teubner, Stuttgart (1979). Zbl0424.68040MR549481
  3. [3] M. Hall, A topology for free groups and related groups. Ann. of Math. 52 (1950). Zbl0041.36210MR36767
  4. [4] T. Hall, Biprefix codes, inverse semigroups and syntactic monoids of injective automata. Theoret. Comput. Sci. 32 (1984) 201-213. Zbl0567.68047MR761168
  5. [5] B. Herwig and D. Lascar, Extending partial automorphisms and the profinite topology on free groups. Trans. Amer. Math. Soc. 352 (2000) 1985-2021. Zbl0947.20018MR1621745
  6. [6] S. Margolis and J. Meakin, Inverse monoids, trees, and context-free languages. Trans. Amer. Math. Soc. 335 (1993) 259-276. Zbl0795.20043MR1073775
  7. [7] S. Margolis, M. Sapir and P. Weil, Closed subgroups in pro-V topologies and the extension problem for inverse automata. Preprint (1998). Zbl1027.20036MR1850210
  8. [8] S.W Margolis and J.-E. Pin, Languages and inverse semigroups, edited by J. Paredaens, Automata, Languages and Programming, 11th Colloquium. Antwerp, Belgium. Springer-Verlag, Lecture Notes in Comput. Sci. 172 (1984) 337-346. Zbl0566.68061MR784261
  9. [9] J.-E. Pin, Topologies for the free monoid. J. Algebra 137 (1991). Zbl0739.20032MR1094245
  10. [10] J.-E. Pin, On reversible automata, edited by I. Simon, in Proc. of Latin American Symposium on Theoretical Informatics (LATIN '92). Springer, Berlin, Lecture Notes in Comput. Sci. 583 (1992) 401-416; A preliminary version appeared in the Proceedings of ICALP'87, Lecture Notes in Comput. Sci. 267. MR1253368
  11. [11] P.V. Silva, On free inverse monoid languages. RAIRO: Theoret. Informatics Appl. 30 (1996) 349-378. Zbl0867.68074MR1427939
  12. [12] B. Steinberg, Finite state automata: A geometric approach. Technical Report, Univ. of Porto (1999). Zbl0980.20067
  13. [13] B. Steinberg, Inverse automata and profinite topologies on a free group. Preprint (1999). MR1874549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.