Complexité et automates cellulaires linéaires

Valérie Berthé

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2000)

  • Volume: 34, Issue: 5, page 403-423
  • ISSN: 0988-3754

How to cite

top

Berthé, Valérie. "Complexité et automates cellulaires linéaires." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 34.5 (2000): 403-423. <http://eudml.org/doc/92643>.

@article{Berthé2000,
author = {Berthé, Valérie},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {linear cellular automaton},
language = {fre},
number = {5},
pages = {403-423},
publisher = {EDP-Sciences},
title = {Complexité et automates cellulaires linéaires},
url = {http://eudml.org/doc/92643},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Berthé, Valérie
TI - Complexité et automates cellulaires linéaires
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 5
SP - 403
EP - 423
LA - fre
KW - linear cellular automaton
UR - http://eudml.org/doc/92643
ER -

References

top
  1. [1] J.-P. Allouche, Automates finis en théorie des nombres. Exposition. Math. 5 (1987) 239-266. Zbl0641.10041MR898507
  2. [2] J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1 (1994) 133-143. Zbl0803.68094MR1318964
  3. [3] J.-P. Allouche et V. Berthé, Triangle de Pascal, complexité et automates. Bull. Belg. Math. Soc. 4 (1997) 1-23. Zbl0922.11012MR1440666
  4. [4] J.-P. Allouche et J. Shallit, The ring of k-regular sequences. Theoret. Cornput. Sci. 98 (1992) 163-197. Zbl0774.68072MR1166363
  5. [5] J.-P. Allouche et D. Berend, Complexity of the sequence of middle-binomial coefficients (en préparation). 
  6. [6] J.-P. Allouche, E. Cateland, H.-O. Peitgen, J. Shallit et G. Skordev, Automatic maps on a semiring with digits. Fractals 3 (1995) 663-677. Zbl0879.11010MR1410286
  7. [7] J.-P. Allouche, F. von Haeseler, H.-O. Peitgen et G. Skordev, Linear cellular automata, finite automata and Pascal's triangle. Discrete Appl. Math. 66 (1966) 1-22. Zbl0854.68065MR1387674
  8. [8] J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, A. Petersen et G. Skordev, Linear cellular automata and automatic sequences. Parallel Comput. 23 (1997) 1577-1592. Zbl0943.11020MR1602847
  9. [9] J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, A. Petersen et G. Skordev, Automaticity of double sequences generated by one-dimensional linear cellular automata. Theoret. Comput. Sci. 88 (1997) 195-209. Zbl0943.11020MR1479629
  10. [10] F. Blanchard, P. Kurka et A. Maass, Topological and measure-theoretic properties of one-dimensional cellular automata. Phys. D 103 (1997) 86-99. Zbl1194.37002MR1464242
  11. [11] J. Cassaigne, Special factors of sequences with linear subword complexity, in Developments in Language Theory II (DLT'95), Magdeburg (Allemagne). World Scientific (1996) 25-34. Zbl1096.68690MR1466182
  12. [12] A. Cobham, Uniform tag sequences. Math. Systems Theory 6 (1972) 164-192. Zbl0253.02029MR457011
  13. [13] C. Grillenberger, Construction of striclty ergodic Systems I. Given entropy. Z. Wahrsch. Verw. Gebiete 25 (1973) 323-334. Zbl0253.28004MR340544
  14. [14] B. Litow et P. Dumas, Additive cellular automata and algebraic series. Theoret. Comput. Sci. 119 (1993) 345-354. Zbl0787.68074MR1244299
  15. [15] G. Manzini, Characterization of sensitive linear cellular automata with respect to the counting distance, in MFCS'98. Springer, Lecture Notes in Comput. Sci. 1450 (1998) 825-833. Zbl0918.68068MR1686451
  16. [16] G. Manzini et L. Margara, Attractors of D-dimensional linear cellular automata, in STACS 98. Springer, Lecture Notes in Comput. Sci. 1373 (1998) 128-138. Zbl0894.68098MR1650793
  17. [17] G. Manzini et L. Margara, Invertible cellular automata over Zm: Algorithmic and dynamical aspects. J. Comput. System Sci. 56 (1998) 60-67. Zbl0914.68144MR1610931
  18. [18] G. Manzini et L. Margara, A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Zm. Theoret. Comput. Sci. 221 (1999) 157-177. Zbl0930.68090MR1700824
  19. [19] O. Martin, A. Odlyzko et S. Wolfram, Algebraic properties of cellular automata. Comm. Math. Phys. 93 (1984) 219-258. Zbl0564.68038MR742194
  20. [20] J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés. Springer, Lecture Notes in Comput. Sci. 172 (1984) 380-389. Zbl0554.68053MR784265
  21. [21] A. D. Robinson, Fast computation of additive cellular automata. Complex Systems 1 (1987) 211-216. Zbl0655.68064MR891522
  22. [22] O. Salon, Suites automatiques à multi-indices et algébricité. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 501-504. Zbl0628.10007MR916320
  23. [23] O. Salon, Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux, Exposé 4 (1986-1987) 4-01-4-27 ; suivi par un Appendice de J. Shallit, 4-29A-4-36A. Zbl0653.10049
  24. [24] J. W. Sander, R. Tijdeman, The complexity of fonctions on lattices. Theoret. Comput. Sci. (à paraître). Zbl1005.68118

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.