Maximal circular codes versus maximal codes

Yannick Guesnet

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)

  • Volume: 35, Issue: 4, page 351-365
  • ISSN: 0988-3754

Abstract

top
We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.

How to cite

top

Guesnet, Yannick. "Maximal circular codes versus maximal codes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.4 (2001): 351-365. <http://eudml.org/doc/92670>.

@article{Guesnet2001,
abstract = {We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.},
author = {Guesnet, Yannick},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {maximal circular code},
language = {eng},
number = {4},
pages = {351-365},
publisher = {EDP-Sciences},
title = {Maximal circular codes versus maximal codes},
url = {http://eudml.org/doc/92670},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Guesnet, Yannick
TI - Maximal circular codes versus maximal codes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 351
EP - 365
AB - We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.
LA - eng
KW - maximal circular code
UR - http://eudml.org/doc/92670
ER -

References

top
  1. [1] J. Berstel and D. Perrin, Theory of Codes. Academic Press (1985). Zbl0587.68066MR797069
  2. [2] V. Bruyère, Codes, Dissertation présentée pour l’obtention de grade légal de docteur en sciences. Université de Mons-Hainaut (1991). 
  3. [3] V. Bruyère, On maximal codes with bounded synchronization delay. Theoret. Comput. Sci., 204 (1998) 11-28. Zbl0913.68160MR1637488
  4. [4] A. de Luca and A. Restivo, On some properties of very pure codes. Theoret. Comput. Sci., 10 (1980) 157-170. Zbl0421.68078MR551602
  5. [5] Y. Guesnet, On codes with finite interpreting delay: A defect theorem. Theoret. Informatics Appl., 34 (2000) 47-59. Zbl0978.94047MR1771129
  6. [6] Y. Guesnet, Codes et interprétations, Thèse de doctorat. Université de Rouen (2001). MR1879770
  7. [7] Y. Guesnet, On maximal codes with finite interpreting delay. Theoret. Comput. Sci., (to appear). Zbl1050.68040
  8. [8] M.P. Schützenberger, Une théorie algébrique du codage, in: Séminaire Dubreil-Pisot 1955-56 Institut H. Poincaré (1956), Exposé n 15. MR75169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.