Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata
Carlo Mereghetti; Beatrice Palano; Giovanni Pighizzini
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2001)
- Volume: 35, Issue: 5, page 477-490
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topMereghetti, Carlo, Palano, Beatrice, and Pighizzini, Giovanni. "Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 35.5 (2001): 477-490. <http://eudml.org/doc/92678>.
@article{Mereghetti2001,
abstract = {We investigate the succinctness of several kinds of unary automata by studying their state complexity in accepting the family $\lbrace \{L_m\}\rbrace $ of cyclic languages, where $L_m=\{\lbrace \{a^\{km\}\} \;|\;\{k\in \mathbb \{N\}\}\rbrace \}$. In particular, we show that, for any $m$, the number of states necessary and sufficient for accepting the unary language $L_m$ with isolated cut point on one-way probabilistic finite automata is $p_1^\{\alpha _1\}+ p_2^\{\alpha _2\} +\cdots +p_s^\{\alpha _s\}$, with $p_1^\{\alpha _1\}p_2^\{\alpha _2\} \cdots p_s^\{\alpha _s\}$ being the factorization of $m$. To prove this result, we give a general state lower bound for accepting unary languages with isolated cut point on the one-way probabilistic model. Moreover, we exhibit one-way quantum finite automata that, for any $m$, accept $L_m$ with isolated cut point and only two states. These results are settled within a survey on unary automata aiming to compare the descriptional power of deterministic, nondeterministic, probabilistic and quantum paradigms.},
author = {Mereghetti, Carlo, Palano, Beatrice, Pighizzini, Giovanni},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {deterministic; nondeterministic; probabilistic; quantum unary finite automata; unary automata; cyclic languages},
language = {eng},
number = {5},
pages = {477-490},
publisher = {EDP-Sciences},
title = {Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata},
url = {http://eudml.org/doc/92678},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Mereghetti, Carlo
AU - Palano, Beatrice
AU - Pighizzini, Giovanni
TI - Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 5
SP - 477
EP - 490
AB - We investigate the succinctness of several kinds of unary automata by studying their state complexity in accepting the family $\lbrace {L_m}\rbrace $ of cyclic languages, where $L_m={\lbrace {a^{km}} \;|\;{k\in \mathbb {N}}\rbrace }$. In particular, we show that, for any $m$, the number of states necessary and sufficient for accepting the unary language $L_m$ with isolated cut point on one-way probabilistic finite automata is $p_1^{\alpha _1}+ p_2^{\alpha _2} +\cdots +p_s^{\alpha _s}$, with $p_1^{\alpha _1}p_2^{\alpha _2} \cdots p_s^{\alpha _s}$ being the factorization of $m$. To prove this result, we give a general state lower bound for accepting unary languages with isolated cut point on the one-way probabilistic model. Moreover, we exhibit one-way quantum finite automata that, for any $m$, accept $L_m$ with isolated cut point and only two states. These results are settled within a survey on unary automata aiming to compare the descriptional power of deterministic, nondeterministic, probabilistic and quantum paradigms.
LA - eng
KW - deterministic; nondeterministic; probabilistic; quantum unary finite automata; unary automata; cyclic languages
UR - http://eudml.org/doc/92678
ER -
References
top- [1] A. Ambainis, The complexity of probabilistic versus deterministic finite automata, in Proc. 7th International Symposium on Algorithms and Computation (ISAAC). Springer, Lecture Notes in Comput. Sci. 1178 (1996) 233-238. Zbl1036.68510MR1615194
- [2] A. Ambainis& R. Freivalds, 1-way quantum finite automata: Strengths, weaknesses and generalizations, in Proc. 39th Annual Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press (1998) 332-342.
- [3] A. Brodsky& N. Pippenger, Characterizations of 1-way quantum finite automata, Techn. Rep. 99-03. Univ. of British Columbia, Dept. of Computer Science (1999). Zbl1051.68062
- [4] A. Chandra, D. Kozen& L. Stockmeyer, Alternation. J. ACM 28 (1981) 114-133. Zbl0473.68043MR603186
- [5] M. Chrobak, Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986) 149-158. Zbl0638.68096MR881208
- [6] F. Gantmacher, Applications of Theory of Matrices. Interscience Pub., New York (1959). Zbl0085.01001MR107648
- [7] J. Gruska, Quantum Computing. McGraw-Hill, London, New York (1999). MR1978991
- [8] J. Gruska, Descriptional complexity issues in quantum computing. J. Autom. Lang. Comb 5 (2000) 191-218. Zbl0965.68021MR1778471
- [9] A. Kondacs& J. Watrous, On the power of quantum finite state automata, in Proc. 38th Annual Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press (1997) 66-75.
- [10] J. Hopcroft& J. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA (1979). Zbl0426.68001MR645539
- [11] R. Ladner, R. Lipton & L. Stockmeyer, Alternating pushdown and stack automata. SIAM J. Comput. 13 (1984) 135-155. Zbl0538.68039MR731032
- [12] E. Landau, Uber die Maximalordung der Permutationen gegebenen Grades. Archiv. der Math. und Phys. 3 (1903) 92-103. Zbl34.0233.02JFM34.0233.02
- [13] E. Landau, Handbuch der lehre von der verteilung der primzahlen. I. Teubner, Leipzig, Berlin (1909). Zbl40.0232.08JFM40.0232.08
- [14] C. Mereghetti& G. Pighizzini, Two-Way automata simulations and unary languages. J. Autom. Lang. Comb. 5 (2000) 287-300. Zbl0965.68043MR1778478
- [15] C. Mereghetti& G. Pighizzini, Optimal simulations between unary autom. SIAM J. Comput. 30 (2001) 1976-1992. Zbl0980.68048MR1856565
- [16] A. Meyer& M. Fischer, Economy of description by automata, grammars, and formal systems, in Proc. 12th Annual Symposium on Switching and Automata Theory. East Lansing, Michigan (1971) 188-191.
- [17] M. Milani& G. Pighizzini, Tight bounds on the simulation of unary probabilistic automata by deterministic automata, in Pre-Proc. Descriptional Complexity of Automata, Grammars and Related Structures (DCAGRS), Techn. Rep. 555. Univ. of Western Ontario, Canada, Dept. Comp. Sci., J. Autom. Lang. and Comb. (2000). Zbl1050.68095
- [18] E. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C-20 (1971) 1211-1214. Zbl0229.94033
- [19] C. Moore& J. Crutchfield, Quantum automata and quantum grammars. Theoret. Comput. Sci. 237 (2000) 275-306. Zbl0939.68037MR1756213
- [20] A. Paz, Introduction to Probabilistic Automata. Academic Press, New York, London (1971). Zbl0234.94055MR289222
- [21] J.E. Pin, On Languages Accepted by finite reversible automata, in Proc. of the 14th International Colloquium on Automata, Languages and Programming (ICALP). Springer-Verlag, Lecture Notes in Comput. Sci. 267 (1987) 237-249. Zbl0627.68069MR912712
- [22] M. Rabin, Probabilistic automata. Inform. and Control 6 (1963) 230-245. Zbl0182.33602
- [23] M. Rabin& D. Scott, Finite automata and their decision problems. IBM J. Res. Develop. 3 (1959) 114-125. Also in: E.F. Moore, Sequential Machines: Selected Papers. Addison-Wesley, Reading, MA (1964). Zbl0158.25404MR103795
- [24] J. Shepherdson, The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3 (1959) 198-200. Also in: E.F. Moore, Sequential Machines: Selected Papers. Addison-Wesley, Reading, MA (1964). Zbl0158.25601MR103796
- [25] M. Szalay, On the maximal order in and . Acta Arithmetica 37 (1980) 321-331. Zbl0443.10029MR598884
- [26] P. Turán, Combinatorics, partitions, group theory, edited by B. Serge, Colloquio Internazionale sulle Teorie Combinatorie. Acc. Naz. dei Lincei, Rome (1976) 181-200. Zbl0359.10041MR506094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.