A Note on a Conjecture of Duval and Sturmian Words
Filippo Mignosi; Luca Q. Zamboni
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 36, Issue: 1, page 1-3
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topMignosi, Filippo, and Zamboni, Luca Q.. "A Note on a Conjecture of Duval and Sturmian Words." RAIRO - Theoretical Informatics and Applications 36.1 (2010): 1-3. <http://eudml.org/doc/92688>.
@article{Mignosi2010,
abstract = {
We prove a long standing conjecture of Duval in the special case
of
Sturmian words.
},
author = {Mignosi, Filippo, Zamboni, Luca Q.},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Bordered words; Sturmian words.; Sturmian words},
language = {eng},
month = {3},
number = {1},
pages = {1-3},
publisher = {EDP Sciences},
title = {A Note on a Conjecture of Duval and Sturmian Words},
url = {http://eudml.org/doc/92688},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Mignosi, Filippo
AU - Zamboni, Luca Q.
TI - A Note on a Conjecture of Duval and Sturmian Words
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 1
EP - 3
AB -
We prove a long standing conjecture of Duval in the special case
of
Sturmian words.
LA - eng
KW - Bordered words; Sturmian words.; Sturmian words
UR - http://eudml.org/doc/92688
ER -
References
top- P. Arnoux and G. Rauzy, Représentation géométrique des suites de complexité 2n+1.Bull. Soc. Math. France119 (1991) 199-215.
- R. Assous and M. Pouzet, Une Caractérisation des mots périodiques. Discrete Math.25 (1979) 1-5.
- J.P. Duval, Relationship between the Period of a Finite Word and the Length of its Unbordered Segments. Discrete Math.40 (1982) 31-44.
- A. Ehrenfeucht and D.M. Silberger, Periodicity and Unbordered Segments of words. Discrete Math.26 (1979) 101-109.
- Lothaire, Algebraic Combinatorics on Words, Chap. 9 Periodicity, Chap. 3 Sturmian Words. Cambridge University Press (to appear). Available at URIhttp://www-igm.univ-mlv.fr/berstel
- G. Pirillo, A rather curious characteristic property of standard Sturmian words, to appear in Algebraic Combinatorics, edited by G. Rota, D. Senato and H. Crapo. Springer-Verlag Italia, Milano (in press).
- F. Mignosi and P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Théorie des Nombres de Bordeaux5 (1993) 221-233.
- G. Rauzy, Mots infinis en arithmétique, in Automata on Infinite Words, edited by M. Nivat and D. Perrin. Lecture Notes in Comput. Sci.192 (1985) 167-171.
- R. Risley and L.Q. Zamboni, A generalization of Sturmian sequences; combinatorial structure and transcendence. Acta Arith.95 (2000).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.