A Note on a Conjecture of Duval and Sturmian Words

Filippo Mignosi; Luca Q. Zamboni

RAIRO - Theoretical Informatics and Applications (2010)

  • Volume: 36, Issue: 1, page 1-3
  • ISSN: 0988-3754

Abstract

top
We prove a long standing conjecture of Duval in the special case of Sturmian words.

How to cite

top

Mignosi, Filippo, and Zamboni, Luca Q.. "A Note on a Conjecture of Duval and Sturmian Words." RAIRO - Theoretical Informatics and Applications 36.1 (2010): 1-3. <http://eudml.org/doc/92688>.

@article{Mignosi2010,
abstract = { We prove a long standing conjecture of Duval in the special case of Sturmian words. },
author = {Mignosi, Filippo, Zamboni, Luca Q.},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Bordered words; Sturmian words.; Sturmian words},
language = {eng},
month = {3},
number = {1},
pages = {1-3},
publisher = {EDP Sciences},
title = {A Note on a Conjecture of Duval and Sturmian Words},
url = {http://eudml.org/doc/92688},
volume = {36},
year = {2010},
}

TY - JOUR
AU - Mignosi, Filippo
AU - Zamboni, Luca Q.
TI - A Note on a Conjecture of Duval and Sturmian Words
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 1
EP - 3
AB - We prove a long standing conjecture of Duval in the special case of Sturmian words.
LA - eng
KW - Bordered words; Sturmian words.; Sturmian words
UR - http://eudml.org/doc/92688
ER -

References

top
  1. P. Arnoux and G. Rauzy, Représentation géométrique des suites de complexité 2n+1.Bull. Soc. Math. France119 (1991) 199-215.  
  2. R. Assous and M. Pouzet, Une Caractérisation des mots périodiques. Discrete Math.25 (1979) 1-5.  
  3. J.P. Duval, Relationship between the Period of a Finite Word and the Length of its Unbordered Segments. Discrete Math.40 (1982) 31-44.  
  4. A. Ehrenfeucht and D.M. Silberger, Periodicity and Unbordered Segments of words. Discrete Math.26 (1979) 101-109.  
  5. Lothaire, Algebraic Combinatorics on Words, Chap. 9 Periodicity, Chap. 3 Sturmian Words. Cambridge University Press (to appear). Available at  URIhttp://www-igm.univ-mlv.fr/berstel
  6. G. Pirillo, A rather curious characteristic property of standard Sturmian words, to appear in Algebraic Combinatorics, edited by G. Rota, D. Senato and H. Crapo. Springer-Verlag Italia, Milano (in press).  
  7. F. Mignosi and P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Théorie des Nombres de Bordeaux5 (1993) 221-233.  
  8. G. Rauzy, Mots infinis en arithmétique, in Automata on Infinite Words, edited by M. Nivat and D. Perrin. Lecture Notes in Comput. Sci.192 (1985) 167-171.  
  9. R. Risley and L.Q. Zamboni, A generalization of Sturmian sequences; combinatorial structure and transcendence. Acta Arith.95 (2000).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.