On a complete set of operations for factorizing codes
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 40, Issue: 1, page 29-52
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topDe Felice, Clelia. "On a complete set of operations for factorizing codes." RAIRO - Theoretical Informatics and Applications 40.1 (2010): 29-52. <http://eudml.org/doc/92788>.
@article{DeFelice2010,
abstract = {
It is known that the class
of factorizing codes, i.e.,
codes satisfying the factorization conjecture
formulated by Schützenberger, is
closed under two operations:
the classical
composition of codes and substitution
of codes.
A natural question which arises
is whether
a finite set O
of operations
exists
such that each factorizing
code can be obtained by using
the operations in
O and starting with prefix or suffix codes.
O is named here
a complete set
of operations (for factorizing codes).
We show that composition and substitution
are not enough in order to obtain
a complete
set. Indeed, we exhibit
a factorizing code over a two-letter alphabet A = \{a,b\}, precisely a 3-code, which cannot be
obtained by decomposition or substitution.
},
author = {De Felice, Clelia},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Variable length codes; formal languages; factorizations of cyclic groups.; free monoid generated by a finite alphabet},
language = {eng},
month = {3},
number = {1},
pages = {29-52},
publisher = {EDP Sciences},
title = {On a complete set of operations for factorizing codes},
url = {http://eudml.org/doc/92788},
volume = {40},
year = {2010},
}
TY - JOUR
AU - De Felice, Clelia
TI - On a complete set of operations for factorizing codes
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 40
IS - 1
SP - 29
EP - 52
AB -
It is known that the class
of factorizing codes, i.e.,
codes satisfying the factorization conjecture
formulated by Schützenberger, is
closed under two operations:
the classical
composition of codes and substitution
of codes.
A natural question which arises
is whether
a finite set O
of operations
exists
such that each factorizing
code can be obtained by using
the operations in
O and starting with prefix or suffix codes.
O is named here
a complete set
of operations (for factorizing codes).
We show that composition and substitution
are not enough in order to obtain
a complete
set. Indeed, we exhibit
a factorizing code over a two-letter alphabet A = {a,b}, precisely a 3-code, which cannot be
obtained by decomposition or substitution.
LA - eng
KW - Variable length codes; formal languages; factorizations of cyclic groups.; free monoid generated by a finite alphabet
UR - http://eudml.org/doc/92788
ER -
References
top- M. Anselmo, A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes, in Proc. DLT'99, G. Rozenberg, W. Thomas Eds. World Scientific (2000) 141–152.
- M. Anselmo, A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes. Discrete Appl. Math.126 (2003) 129–165.
- J. Berstel and D. Perrin, Theory of Codes. Academic Press, New York (1985).
- J. Berstel and D. Perrin, Trends in the Theory of Codes. Bull. EATCS29 (1986) 84–95.
- J. Berstel and C. Reutenauer, Rational Series and Their Languages. EATCS Monogr. Theoret. Comput. Sci.12 (1988).
- J.M. Boë, Une famille remarquable de codes indécomposables, in Proc. Icalp 78. Lect. Notes Comput. Sci.62 (1978) 105–112.
- J.M. Boë, Sur les codes factorisants, in Théorie des Codes, Actes de la 7e École de Printemps d'Informatique Théorique, edited by D. Perrin. LITP and ENSTA, Paris (1980) 1–8.
- V. Bruyère and C. De Felice, Synchronization and decomposability for a family of codes. Intern. J. Algebra Comput.4 (1992) 367–393.
- V. Bruyère and C. De Felice, Synchronization and decomposability for a family of codes: Part 2. Discrete Math.140 (1995) 47–77.
- V. Bruyère and M. Latteux, Variable-Length Maximal Codes, in Proc. Icalp 96. Lect. Notes Comput. Sci.1099 (1996) 24–47.
- M.G. Castelli, D. Guaiana and S. Mantaci, Indecomposable prefix codes and prime trees, in Proc. DLT 97 edited by S. Bozapadilis-Aristotel (1997).
- Y. Césari, Sur un algorithme donnant les codes bipréfixes finis. Math. Syst. Theory6 (1972) 221–225.
- Y. Césari, Sur l'application du théorème de Suschkevitch à l'étude des codes rationnels complets, in Proc. Icalp 74. Lect. Notes Comput. Sci. (1974) 342–350.
- C. De Felice, Construction of a family of finite maximal codes. Theoret. Comput. Sci.63 (1989) 157–184.
- C. De Felice, A partial result about the factorization conjecture for finite variable-length codes. Discrete Math.122 (1993) 137–152.
- C. De Felice, An application of Hajós factorizations to variable-length codes. Theoret. Comput. Sci.164 (1996) 223–252.
- C. De Felice, Factorizing Codes and Schützenberger Conjectures, in Proc. MFCS 2000. Lect. Notes Comput. Sci.1893 (2000) 295–303.
- C. De Felice, On some Schützenberger Conjectures. Inform. Comp.168 (2001) 144–155.
- C. De Felice, An enhanced property of factorizing codes. Theor. Comput. Sci.340 (2005) 240–256.
- C. De Felice and A. Restivo, Some results on finite maximal codes. RAIRO-Inform. Theor. Appl.19 (1985) 383–403.
- C. De Felice and C. Reutenauer, Solution partielle de la conjecture de factorisation des codes. C.R. Acad. Sci. Paris302 (1986) 169–170.
- D. Derencourt, A three-word code which is not prefix-suffix composed. Theor. Comput. Sci.163 (1996) 145–160.
- L. Fuchs, Abelian groups. Pergamon Press, New York (1960).
- G. Hajós, Sur la factorisation des groupes abéliens. Casopis Pest. Mat. Fys.74 (1950) 157–162.
- M. Krasner and B. Ranulac, Sur une propriété des polynômes de la division du cercle. C.R. Acad. Sci. Paris240 (1937) 397–399.
- N.H. Lam, A note on codes having no finite completions. Inform. Proc. Lett.55 (1995) 185–188.
- N.H. Lam, Hajós factorizations and completion of codes. Theor. Comput. Sci.182 (1997) 245–256.
- J. Neraud and C. Selmi, Locally complete sets and finite decomposable codes. Theor. Comput. Sci.273 (2002) 185–196.
- M. Nivat, Éléments de la théorie générale des codes, in Automata Theory, edited by E. Caianiello. Academic Press, New York (1966) 278–294.
- D. Perrin, Codes asynchrones. Bull. Soc. Math. France105 (1977) 385–404.
- D. Perrin, Polynôme d'un code, in Théorie des Codes, Actes de la 7e École de Printemps d'Informatique Théorique, edited by D. Perrin. LITP and ENSTA, Paris (1980) 169–176.
- D. Perrin and M.P. Schützenberger, Un problème élémentaire de la théorie de l'information, Théorie de l'Information, Colloques Internat. CNRS, Cachan 276 (1977) 249–260.
- A. Restivo, On codes having no finite completions. Discrete Math.17 (1977) 309–316.
- A. Restivo, Codes and local constraints. Theor. Comput. Sci.72 (1990) 55–64.
- A. Restivo, S. Salemi and T. Sportelli, Completing codes. RAIRO-Inf. Theor. Appl.23 (1989) 135–147.
- A. Restivo and P.V. Silva, On the lattice of prefix codes. Theor. Comput. Sci.289 (2002) 755–782.
- C. Reutenauer, Sulla fattorizzazione dei codici. Ricerche di Mat.XXXII (1983) 115–130.
- C. Reutenauer, Non commutative factorization of variable-length codes. J. Pure Appl. Algebra36 (1985) 167–186.
- A.D. Sands, On the factorisation of finite abelian groups. Acta Math. Acad. Sci. Hungaricae8 (1957) 65–86.
- M.P. Schützenberger, Une théorie algébrique du codage, Séminaire Dubreil-Pisot 1955–56, exposé No. 15 (1955), 24 p.
- M. Vincent, Construction de codes indécomposables. RAIRO-Inf. Theor. Appl.19 (1985) 165–178.
- L. Zhang and C.K. Gu, Two classes of factorizing codes – (p,p)-codes and (4,4)-codes, in Words, Languages and Combinatorics II, edited by M. Ito and H. Jürgensen. World Scientific (1994) 477–483.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.