Parallel approximation to high multiplicity scheduling problems VIA smooth multi-valued quadratic programming
RAIRO - Theoretical Informatics and Applications (2007)
- Volume: 42, Issue: 2, page 237-252
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- N. Alon, and A. Srinivasan, Improved parallel approximation of a class of integer programming problems. Algorithmica17 (1997) 449–462.
- S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense instances of NP-hard problems. Proceedings of the twenty-seventh annual ACM Symposium on Theory of Computing (STOC '95) 58 (1995) 284–293, ACM Press.
- S. Arora, A. Frieze, and H. Kaplan, A new rounding procedure for the assignment problem with applications to dense graph arrangement problems, in Procedings of the FOCS'96 (1996) 21–30.
- S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense instances of NP-hard problems. J. Comput. Syst. Sci.58 (1999) 193–210.
- M.R. Garey, and D.S. Johnson, Computers and Intractability – A Guide to the Theory of NP-Completeness. W.H. Freeman and Co. (1979).
- F. Granot, J. Skorin-Kapov, and A. Tamir, Using quadratic programming to solve high multiplicity scheduling problems on parallel machines. Algorithmica17 (1997) 100–110.
- R. Greenlaw, H.J. Hoover, and W.L. Ruzzo, Limits to Parallel Computation: P-Completeness Theory. Oxford University Press (1995).
- D.S. Hochbaum, and R. Shamir, Strongly polynomial algorithms for the high multiplicity scheduling problem. RAIRO Oper. Res.39 (1991) 648–653.
- M. Karpinski, J. Wirtgen, and A. Zelikovsky, An approximation algorithm for the bandwidth problem on dense graphs. Technical Report TR97-017, ECCC (1997).
- M. Karpinski, J. Wirtgen, and A. Zelikovsky, Polynomial times approximation schemes for some dense instances of NP-hard problems. Technical Report TR97-024, ECCC (1997).
- M. Karpinski, and A. Zelikovsky, Approximating dense cases of covering problems. Network design: connectivity and facilities location (Princeton, NJ, 1997). Amer. Math. Soc. (1998) 169–178.
- M. Luby, and N. Nisan, A parallel approximation algorithm for positive linear programming, in Proceedings of 25th ACM Symposium on Theory of Computing (1993) 448–457.
- M. Minoux, Mathematical programming: theory and algorithms, Wiley (1986).
- R. Motwani, and P. Raghavan, Randomized Algorithms. Cambridge University Press (1995).
- P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. Syst. Sci.37 (1988) 130–143.
- P. Raghavan, and C. Thompson, Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica7 (1987) 365–374.
- M. Serna, Approximating linear programming is logspace complete for P. Inform. Process. Lett.37 (1991) 233–236.
- M. Serna, and F. Xhafa, The parallel approximability of a subclass of quadratic programming. Theoret. Comput. Sci.259 (2001) 217–231.
- P.S. Efraimidis, and P.G. Spirakis, Fast, parallel and sequential approximations to “hard” combinatorial optimization problems. Technical Report TR99/06/01, CTI, Patras (June 1999).
- L. Trevisan, Luca Trevisan: Positive linear programming, parallel approximation and PCP's. Lect. Notes Comput. Sci.1136 (1996) 62–75.
- L. Trevisan, Parallel approximation algorithms by positive linear programming. Algorithmica21 (1998) 72–88.
- M. Serna, L. Trevisan, and F. Xhafa, The approximability of non-boolean satisfiability problems and restricted integer programming. Theoret. Comput. Sci.332 (2005) 123–139.