Hierarchies of function classes defined by the first-value operator
RAIRO - Theoretical Informatics and Applications (2007)
- Volume: 42, Issue: 2, page 253-270
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. Brattka, Effective Borel measurability and reducibility of functions. Math. Logic Quart.51 (2005) 19–44.
- R. Engelking, General topology. Heldermann Verlag, Berlin (1989).
- R.L. Epstein, R. Haas and R.L. Kramer, Hierarchies of sets and degrees below 0', in Logic Year 1979/80, Univ. of Connecticut, edited by M. Lerman, J.H. Schmerl and R.I. Soare. Lect. Notes Math.859 32–48.
- Yu. L. Ershov, A hierarchy of sets. I; II; III. Algebra Logica 7 (1968) 15–47. Algebra Logica 7 (1968) 47–74. Algebra Logica 9 (1970) 34–51 (English translation by Plenum P.C.).
- F. Hausdorff, Grundzüge der Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig (1914); Reprint: Chelsea P.C., New York (1949).
- F. Hausdorff, Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig (1927).
- A. Hemmerling, Approximate decidability in Euclidean spaces. Math. Logic Quart.49 (2003) 34–56.
- A. Hemmerling, Characterizations of the class over Euclidean spaces. Math. Logic Quart.50 (2004) 507–519.
- A. Hemmerling, The Hausdorff-Ershov hierarchy in Euclidean spaces. Arch. Math. Logic45 (2006) 323–350.
- P. Hertling, Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Dissertation. Informatik Berichte 208-11/1996, Fern-Uni Hagen (1996).
- P. Hertling, Topological complexity with continuous operations. J. Complexity12 (1996) 315–338.
- P. Hertling and K. Weihrauch, Levels of degeneracy and exact lower complexity bounds for geometric algorithms, in Proc. of the 6th Canadian Conf. on Computational Geometry, Saskatoon (1994) 237–242.
- A.S. Kechris, Classical descriptive set theory. Springer Verlag, New York (1995).
- K.-I. Ko, Complexity theory of real functions. Birkhäuser, Boston (1991).
- K.-I. Ko and H. Friedman, Computational complexity of real functions. Theoret. Comput. Sci.20 (1982) 323–352.
- C. Kreitz and K. Weihrauch, Complexity theory on real numbers and functions. Lect. Notes. Comput. Sci.145 (1982) 165–174.
- Y.N. Moschovakis, Descriptive set theory. North-Holland, Amsterdam (1980).
- P. Odifreddi, Classical recursion theory. North–Holland, Amsterdam (1989).
- H. Rogers Jr., Theory of recursive functions and effective computability. McGraw-Hill, New York (1967).
- V.L. Selivanov, Wadge degrees of ω-languages of deterministic Turing machines. RAIRO-Theor. Inf. Appl.37 (2003) 67–84.
- R.I. Soare, Recursively enumerable sets and degrees. Springer-Verlag, Berlin (1987).
- K. Weihrauch, Computable analysis. Springer-Verlag, Berlin (2000).