Census algorithms for chinese remainder pseudorank
RAIRO - Theoretical Informatics and Applications (2007)
- Volume: 42, Issue: 2, page 309-322
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- D.J. Bernstein and J. Sorenson, Modular exponentiation via the explicit chinese remainder theorem. Math. Comp.76 (2007) 443–454.
- A. Chiu, G. Davida and B. Litow, Division in logspace-uniform NC1. RAIRO-Theor. Inf. Appl.35 (2001) 259–275.
- G. Davida and B. Litow, Fast parallel arithmetic via modular representation. SIAM J. Comput.20 (1991) 756–765.
- P. Dusart, The kth prime is greater than k(lnk - lnlnk - 1) for k ≥ 2. Math. Comp.68 (1999) 411–415.
- G.H. Hardy and E.M.Wright, An Introduction to the Theory of Numbers. Oxford Press, USA (1979).
- D. Knuth, The Art of Computer Programming, Vol. II. Addison-Wesley (1969).
- W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer-Verlag (1986).
- B. Litow and D. Laing, A census algorithm for chinese remainder pseudorank with experimental results. Technical Report. URIhttp://www.it.jcu.edu.au/ftp/pub/techreports/2005-3.pdf
- A. Salomaa and S. Soittola, Automata Theoretic Aspects of Formal Power Series. Springer-Verlag (1978).
- S.P. Tarasov and M.N. Vyalyi, Semidefinite programming and arithmetic circuit evaluation. Technical report, arXiv:cs.CC/0512035 v1 9 Dec 2005 (2005).
- I.M. Vinogradov, Elements of Number Theory. Dover (1954).