# Minimal NFA and biRFSA Languages

Michel Latteux; Yves Roos; Alain Terlutte

RAIRO - Theoretical Informatics and Applications (2008)

- Volume: 43, Issue: 2, page 221-237
- ISSN: 0988-3754

## Access Full Article

top## Abstract

top## How to cite

topLatteux, Michel, Roos, Yves, and Terlutte, Alain. "Minimal NFA and biRFSA Languages." RAIRO - Theoretical Informatics and Applications 43.2 (2008): 221-237. <http://eudml.org/doc/92913>.

@article{Latteux2008,

abstract = {
In this paper, we define the notion of biRFSA which is a residual finate state
automaton (RFSA) whose the reverse is also an RFSA. The languages recognized by
such automata are called biRFSA languages. We prove that the canonical RFSA of a
biRFSA language is a minimal NFA for this language and that each minimal
NFA for this language is a sub-automaton of the canonical RFSA. This leads
to a characterization of the family of biRFSA languages.
In the second part of this paper, we define the family of biseparable automata.
We prove that every biseparable NFA is uniquely minimal among all NFAs recognizing
a same language, improving
the result of H. Tamm and E. Ukkonen for bideterministic automata.
},

author = {Latteux, Michel, Roos, Yves, Terlutte, Alain},

journal = {RAIRO - Theoretical Informatics and Applications},

keywords = {Residual finite state automata; minimal NFA; residual finite state automata; minimal NFA},

language = {eng},

month = {5},

number = {2},

pages = {221-237},

publisher = {EDP Sciences},

title = {Minimal NFA and biRFSA Languages},

url = {http://eudml.org/doc/92913},

volume = {43},

year = {2008},

}

TY - JOUR

AU - Latteux, Michel

AU - Roos, Yves

AU - Terlutte, Alain

TI - Minimal NFA and biRFSA Languages

JO - RAIRO - Theoretical Informatics and Applications

DA - 2008/5//

PB - EDP Sciences

VL - 43

IS - 2

SP - 221

EP - 237

AB -
In this paper, we define the notion of biRFSA which is a residual finate state
automaton (RFSA) whose the reverse is also an RFSA. The languages recognized by
such automata are called biRFSA languages. We prove that the canonical RFSA of a
biRFSA language is a minimal NFA for this language and that each minimal
NFA for this language is a sub-automaton of the canonical RFSA. This leads
to a characterization of the family of biRFSA languages.
In the second part of this paper, we define the family of biseparable automata.
We prove that every biseparable NFA is uniquely minimal among all NFAs recognizing
a same language, improving
the result of H. Tamm and E. Ukkonen for bideterministic automata.

LA - eng

KW - Residual finite state automata; minimal NFA; residual finite state automata; minimal NFA

UR - http://eudml.org/doc/92913

ER -

## References

top- Dana Angluin. Inference of reversible languages. J. ACM29 (1982) 741–765. Zbl0485.68066
- André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal non deterministic finite automata. Bull. EATCS47 (1992) 166–169. Zbl0751.68038
- Christian Carrez. On the minimalization of non-deterministic automaton. Technical report, Laboratoire de Calcul de la Faculté des Sciences de Lille (1970).
- Jean-Marc Champarnaud and Fabien Coulon. NFA reduction algorithms by means of regular inequalities. Theoretical Computer Science327 (2004) 241–253. Zbl1037.68078
- François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state automata. In Proceedings of STACS 20012010. Springer-Verlag, Dresden (2001) 144–157. Zbl0976.68089
- Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979). Zbl0411.68039
- JE Hopcroft and JD Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Massachusetts (1979).
- Harry B. HuntIII, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence, containment, and covering problems for the regular and context-free languages. Journal of Computer and System Sciences12 (1976) 222–268. Zbl0334.68044
- Michel Latteux, Aurélien Lemay, Yves Roos, and Alain Terlutte. Identification of biRFSA languages. Theoretical Computer Science356 (2006) 212–223. Zbl1160.68417
- Michel Latteux, Yves Roos, and Alain Terlutte. BiRFSA languages and minimal NFAs. Technical Report GRAPPA-0205, GRAppA, (2006). Zbl1166.68025
- Oliver Matz and Andreas Potthoff. Computing small nondeterministic automata. In U.H. Engberg, K.G. Larsen, and A. Skou, Eds., Workshop on Tools and Algorithms for the Construction and Analysis of Systems (1995).
- Dominique Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B). Elsevier (1990) 1–57.
- Jean-Eric Pin. On reversible automata. In Proceedings of the first LATIN conference, Saõ-Paulo. Lecture Notes in Computer Science 583. Springer Verlag (1992) 401–416.
- L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time(preliminary report). In STOC '73: Proceedings of the fifth annual ACM symposium on Theory of computing. ACM Press, NY, USA (1973) 1–9. Zbl0359.68050
- Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal representations of regular languages. Theoretical Computer Science328 (2004) 135–149. Zbl1071.68052

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.