Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques

Pham The Lai

Journées équations aux dérivées partielles (1976)

  • Volume: 2, page 1-59
  • ISSN: 0752-0360

How to cite

top

Pham The Lai. "Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques." Journées équations aux dérivées partielles 2 (1976): 1-59. <http://eudml.org/doc/92961>.

@article{PhamTheLai1976,
author = {Pham The Lai},
journal = {Journées équations aux dérivées partielles},
language = {fre},
pages = {1-59},
publisher = {Ecole polytechnique},
title = {Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques},
url = {http://eudml.org/doc/92961},
volume = {2},
year = {1976},
}

TY - JOUR
AU - Pham The Lai
TI - Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques
JO - Journées équations aux dérivées partielles
PY - 1976
PB - Ecole polytechnique
VL - 2
SP - 1
EP - 59
LA - fre
UR - http://eudml.org/doc/92961
ER -

References

top
  1. [1] S. AGMON - Y. KANNAI, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math, 5 (1967), 1-30. Zbl0148.13003MR36 #1814
  2. [2] R. BEALS, Spacially inhomogeneous pseudo-differential operator II, Comm. Pure Appl. Math, 27 (1974), 161-205. Zbl0283.35071MR57 #7256
  3. [3] R. BEALS - C. FEFFERMAN, Spatially inhomogeneous pseudo-differential operator I, Comm. Pure Appl. Math., 27 (1974), 1-24. Zbl0279.35071MR50 #5234
  4. [4] G. ESKIN, Asymptotics near the boundary of spectral functions of elliptic self-adjoint boundary problems, Israel J. Math. 22 (1975), 214-246. Zbl0341.35061MR52 #11369
  5. [5] L. HÖRMANDER, Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Proc. Symp. Pure Math., 10 (1966), 138-183. Zbl0167.09603
  6. [6] L. HÖRMANDER, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. Zbl0164.13201MR58 #29418
  7. [7] Y. KANNAI, On the asymptotic behavior of resolvents kernels, spectral functions and eigenvalues of semi-elliptic systems, Annali Sc. Norm. Sup. Pisa, 23 (1969), 563-634. Zbl0193.07301MR54 #3183
  8. [8] J. MILNOR, Singular points of complex hypersurfaces, Princeton Univ. Press, Ann. Math. Studies, 61 (1968). Zbl0184.48405MR39 #969
  9. [9] N. NILSSON, Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators, Math. Scand., 9 (1961), 107-121. Zbl0098.06801MR23 #A1924
  10. [10] N. NILSSON, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Arch. för Math., 35 (1964), 527-540. Zbl0144.36302MR36 #2015
  11. [11] N. NILSSON, Some estimates for spectral functions connected with formally hypoelliptic differential operators, Arch. för Math., 10 (1972), 251-275. Zbl0245.35063MR47 #9040
  12. [12] PHAM THE LAI, Comportement asymptotique du noyau de la résolvante et des valeurs propres d'un opérateur elliptique non nécessairement auto-adjoint, à paraître dans Israel J. Math. Zbl0305.35039
  13. [13] S. A. SMAGIN, Fractional powers of an hypoelliptic operator in ℝn, Soviet Math. Dokl., 14 (1973), 585-588. Zbl0299.58012MR48 #4844
  14. [14] A. TSUTSUMI, On the asymptotic behaviour of resolvant kernels and spectral functions for some class of hypoelliptic operators, J. Diff. Eq., 18 (1975), 366-385. Zbl0301.35007MR52 #8679

NotesEmbed ?

top

You must be logged in to post comments.