Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques

Pham The Lai

Journées équations aux dérivées partielles (1976)

  • Volume: 2, page 1-59
  • ISSN: 0752-0360

How to cite

top

Pham The Lai. "Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques." Journées équations aux dérivées partielles 2 (1976): 1-59. <http://eudml.org/doc/92961>.

@article{PhamTheLai1976,
author = {Pham The Lai},
journal = {Journées équations aux dérivées partielles},
language = {fre},
pages = {1-59},
publisher = {Ecole polytechnique},
title = {Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques},
url = {http://eudml.org/doc/92961},
volume = {2},
year = {1976},
}

TY - JOUR
AU - Pham The Lai
TI - Théorie spectrale d'une classe d'opérateurs différentiels hypoelliptiques
JO - Journées équations aux dérivées partielles
PY - 1976
PB - Ecole polytechnique
VL - 2
SP - 1
EP - 59
LA - fre
UR - http://eudml.org/doc/92961
ER -

References

top
  1. [1] S. AGMON - Y. KANNAI, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math, 5 (1967), 1-30. Zbl0148.13003MR36 #1814
  2. [2] R. BEALS, Spacially inhomogeneous pseudo-differential operator II, Comm. Pure Appl. Math, 27 (1974), 161-205. Zbl0283.35071MR57 #7256
  3. [3] R. BEALS - C. FEFFERMAN, Spatially inhomogeneous pseudo-differential operator I, Comm. Pure Appl. Math., 27 (1974), 1-24. Zbl0279.35071MR50 #5234
  4. [4] G. ESKIN, Asymptotics near the boundary of spectral functions of elliptic self-adjoint boundary problems, Israel J. Math. 22 (1975), 214-246. Zbl0341.35061MR52 #11369
  5. [5] L. HÖRMANDER, Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Proc. Symp. Pure Math., 10 (1966), 138-183. Zbl0167.09603
  6. [6] L. HÖRMANDER, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. Zbl0164.13201MR58 #29418
  7. [7] Y. KANNAI, On the asymptotic behavior of resolvents kernels, spectral functions and eigenvalues of semi-elliptic systems, Annali Sc. Norm. Sup. Pisa, 23 (1969), 563-634. Zbl0193.07301MR54 #3183
  8. [8] J. MILNOR, Singular points of complex hypersurfaces, Princeton Univ. Press, Ann. Math. Studies, 61 (1968). Zbl0184.48405MR39 #969
  9. [9] N. NILSSON, Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators, Math. Scand., 9 (1961), 107-121. Zbl0098.06801MR23 #A1924
  10. [10] N. NILSSON, Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Arch. för Math., 35 (1964), 527-540. Zbl0144.36302MR36 #2015
  11. [11] N. NILSSON, Some estimates for spectral functions connected with formally hypoelliptic differential operators, Arch. för Math., 10 (1972), 251-275. Zbl0245.35063MR47 #9040
  12. [12] PHAM THE LAI, Comportement asymptotique du noyau de la résolvante et des valeurs propres d'un opérateur elliptique non nécessairement auto-adjoint, à paraître dans Israel J. Math. Zbl0305.35039
  13. [13] S. A. SMAGIN, Fractional powers of an hypoelliptic operator in ℝn, Soviet Math. Dokl., 14 (1973), 585-588. Zbl0299.58012MR48 #4844
  14. [14] A. TSUTSUMI, On the asymptotic behaviour of resolvant kernels and spectral functions for some class of hypoelliptic operators, J. Diff. Eq., 18 (1975), 366-385. Zbl0301.35007MR52 #8679

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.