Unique continuation theorems for solutions of partial differential equations and inequalities
Mohamed S. Baouendi; E. C. Zachmanoglou
Journées équations aux dérivées partielles (1977)
- Volume: 83, page 9-15
- ISSN: 0752-0360
Access Full Article
topHow to cite
topBaouendi, Mohamed S., and Zachmanoglou, E. C.. "Unique continuation theorems for solutions of partial differential equations and inequalities." Journées équations aux dérivées partielles 83 (1977): 9-15. <http://eudml.org/doc/92990>.
@article{Baouendi1977,
author = {Baouendi, Mohamed S., Zachmanoglou, E. C.},
journal = {Journées équations aux dérivées partielles},
keywords = {Analytic Coefficients; Analytic Manifolds; Continuation Theorem; Elliptic Equations; Hyperbolic Equations},
language = {eng},
pages = {9-15},
publisher = {Ecole polytechnique},
title = {Unique continuation theorems for solutions of partial differential equations and inequalities},
url = {http://eudml.org/doc/92990},
volume = {83},
year = {1977},
}
TY - JOUR
AU - Baouendi, Mohamed S.
AU - Zachmanoglou, E. C.
TI - Unique continuation theorems for solutions of partial differential equations and inequalities
JO - Journées équations aux dérivées partielles
PY - 1977
PB - Ecole polytechnique
VL - 83
SP - 9
EP - 15
LA - eng
KW - Analytic Coefficients; Analytic Manifolds; Continuation Theorem; Elliptic Equations; Hyperbolic Equations
UR - http://eudml.org/doc/92990
ER -
References
top- 1. M. S. BAOUENDI and E. C. ZACHMANOGLOU, Unique Continuation of solutions of partial differential equations and inequalities from manifolds of any dimension, to appear. Duke Journal. Zbl0373.35001
- 2. H. CORDES, Über die Besstimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen IIa (1956), 230-258. Zbl0074.08002
- 3. L. HÖRMANDER, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 617-704. Zbl0226.35019MR45 #3917
- 4. F. JOHN, On linear partial differential equations with analytic coefficients, Comm. Pure Appl. Math. 2 (1949), 209-253. Zbl0035.34601MR12,185d
- 5. M. H. PROTTER, Unique continuation for elliptic equations, Trans. AMS 95 (1960), 81-91. Zbl0094.07901MR22 #3871
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.