Unique continuation theorems for solutions of partial differential equations and inequalities

Mohamed S. Baouendi; E. C. Zachmanoglou

Journées équations aux dérivées partielles (1977)

  • Volume: 83, page 9-15
  • ISSN: 0752-0360

How to cite

top

Baouendi, Mohamed S., and Zachmanoglou, E. C.. "Unique continuation theorems for solutions of partial differential equations and inequalities." Journées équations aux dérivées partielles 83 (1977): 9-15. <http://eudml.org/doc/92990>.

@article{Baouendi1977,
author = {Baouendi, Mohamed S., Zachmanoglou, E. C.},
journal = {Journées équations aux dérivées partielles},
keywords = {Analytic Coefficients; Analytic Manifolds; Continuation Theorem; Elliptic Equations; Hyperbolic Equations},
language = {eng},
pages = {9-15},
publisher = {Ecole polytechnique},
title = {Unique continuation theorems for solutions of partial differential equations and inequalities},
url = {http://eudml.org/doc/92990},
volume = {83},
year = {1977},
}

TY - JOUR
AU - Baouendi, Mohamed S.
AU - Zachmanoglou, E. C.
TI - Unique continuation theorems for solutions of partial differential equations and inequalities
JO - Journées équations aux dérivées partielles
PY - 1977
PB - Ecole polytechnique
VL - 83
SP - 9
EP - 15
LA - eng
KW - Analytic Coefficients; Analytic Manifolds; Continuation Theorem; Elliptic Equations; Hyperbolic Equations
UR - http://eudml.org/doc/92990
ER -

References

top
  1. 1. M. S. BAOUENDI and E. C. ZACHMANOGLOU, Unique Continuation of solutions of partial differential equations and inequalities from manifolds of any dimension, to appear. Duke Journal. Zbl0373.35001
  2. 2. H. CORDES, Über die Besstimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen IIa (1956), 230-258. Zbl0074.08002
  3. 3. L. HÖRMANDER, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 617-704. Zbl0226.35019MR45 #3917
  4. 4. F. JOHN, On linear partial differential equations with analytic coefficients, Comm. Pure Appl. Math. 2 (1949), 209-253. Zbl0035.34601MR12,185d
  5. 5. M. H. PROTTER, Unique continuation for elliptic equations, Trans. AMS 95 (1960), 81-91. Zbl0094.07901MR22 #3871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.