The Poisson summation formula for a Dirichlet problem with gliding and glancing rays

M. J. Bennett; F. G. Friedlander

Journées équations aux dérivées partielles (1982)

  • page 1-11
  • ISSN: 0752-0360

How to cite

top

Bennett, M. J., and Friedlander, F. G.. "The Poisson summation formula for a Dirichlet problem with gliding and glancing rays." Journées équations aux dérivées partielles (1982): 1-11. <http://eudml.org/doc/93077>.

@article{Bennett1982,
author = {Bennett, M. J., Friedlander, F. G.},
journal = {Journées équations aux dérivées partielles},
keywords = {Poisson summation formula; Dirichlet problem; compact Riemannian manifold with smooth boundary; contribution of geodesics},
language = {eng},
pages = {1-11},
publisher = {Ecole polytechnique},
title = {The Poisson summation formula for a Dirichlet problem with gliding and glancing rays},
url = {http://eudml.org/doc/93077},
year = {1982},
}

TY - JOUR
AU - Bennett, M. J.
AU - Friedlander, F. G.
TI - The Poisson summation formula for a Dirichlet problem with gliding and glancing rays
JO - Journées équations aux dérivées partielles
PY - 1982
PB - Ecole polytechnique
SP - 1
EP - 11
LA - eng
KW - Poisson summation formula; Dirichlet problem; compact Riemannian manifold with smooth boundary; contribution of geodesics
UR - http://eudml.org/doc/93077
ER -

References

top
  1. [1] K.G. Andersson and R.B. Melrose. The propagation of singularities along gliding rays, Invent. Math.41 (1977), 23-95. Zbl0373.35053MR58 #13221
  2. [2] M.J. Bennett. To appear. 
  3. [3] J. Chazarain. Formule de Poisson pour les variétés riemanniennes, Invent. Math. 24 (1974), 65-82. Zbl0281.35028MR49 #8062
  4. [4] J.J. Duistermaat and V.W. Guillemin. The spectrum of positive elliptic operators and periodic geodesics, Invent. Math. 29 (1975), 29-79. Zbl0307.35071
  5. [5] V.W. Guillemin and R.B. Melrose, The Poisson summation formula for manifolds with boundary, Advances in Math. 32 (1979), 204-232. Zbl0421.35082MR80j:58066
  6. [6] V.Ya. Ivrii. Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator for manifolds with boundary, Funkts. Anal. i Ego Pril. 14 (1980) 25-34/Funct.Anal.Applic.14 (1980) 98-106. Zbl0453.35068
  7. [7] R.B. Melrose. Forward scattering by a convex obstacle, Comm. Pure Appl.Math. 33 (1980), 461-499. Zbl0435.35066MR81k:35126
  8. [8] R.B. Melrose. Weyl's conjecture for manifolds with concave boundary, A.M.S. Proc.Symp.Pure Math. 36 (1980), 257-274. Zbl0436.58024MR82b:58101
  9. [9] F.W. J. Olver. Asymptotics and special functions, Acad.Press, 1974. Zbl0303.41035MR55 #8655
  10. [10] R.T. Seeley. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of ℝ3, Advances in Math.29 (1978), 244-269. Zbl0382.35043MR80a:35096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.