Propagation des singularités C pour des opérateurs fuchsiens

Cesare Parenti

Journées équations aux dérivées partielles (1982)

  • page 1-9
  • ISSN: 0752-0360

How to cite

top

Parenti, Cesare. "Propagation des singularités $C^\infty $ pour des opérateurs fuchsiens." Journées équations aux dérivées partielles (1982): 1-9. <http://eudml.org/doc/93082>.

@article{Parenti1982,
author = {Parenti, Cesare},
journal = {Journées équations aux dérivées partielles},
keywords = {propagation of singularities; classical pseudo-differential operators of Fuchsian type; non-involutive multiple characteristics},
language = {fre},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Propagation des singularités $C^\infty $ pour des opérateurs fuchsiens},
url = {http://eudml.org/doc/93082},
year = {1982},
}

TY - JOUR
AU - Parenti, Cesare
TI - Propagation des singularités $C^\infty $ pour des opérateurs fuchsiens
JO - Journées équations aux dérivées partielles
PY - 1982
PB - Ecole polytechnique
SP - 1
EP - 9
LA - fre
KW - propagation of singularities; classical pseudo-differential operators of Fuchsian type; non-involutive multiple characteristics
UR - http://eudml.org/doc/93082
ER -

References

top
  1. [1] S. Alinhac : Parametrix et propagation des singularités pour un problème de Cauchy à multiplicité variable, Astérisque, 34-37 (1976), 3-26. Zbl0345.35065MR58 #6719
  2. [2] A. Bove, J. E. Lewis, C. Parenti : Article à paraître. 
  3. [3] N. Hanges : Parametrices and propagation of singularities for operators with non-involutive characteristics, Indiana Univ. Math. J., 28 (1979), 86-97. Zbl0413.35073MR82c:35084
  4. [4] V. Ya. Ivriǐ : Wave fronts of solutions of certain pseudo differential equations, Trans. Moscow Math. Soc., 1 (1981), 49-86. Zbl0461.35090
  5. [5] M. Kashiwara, T. Oshima : Systems of differential equations with regular singularities and their boundary value problems, Annals of Math., 106 (1977), 195-200. Zbl0358.35073MR58 #2914
  6. [6] T. Miwa : Propagation of microanalyticity for solutions of pseudodifferential equations, I, Publ. Res. Inst. Math. Sci., 10 (1975), 521-533. Zbl0312.35063MR58 #29505
  7. [7] T.Ôaku : A canonical form for a system of microdifferential equations with non-involutory characteristic and branching of singularities, Invent. Math., 65 (3) (1982), 491-525. Zbl0493.35083MR83b:58074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.