Propagation des singularités pour des opérateurs fuchsiens
Journées équations aux dérivées partielles (1982)
- page 1-9
- ISSN: 0752-0360
Access Full Article
topHow to cite
topParenti, Cesare. "Propagation des singularités $C^\infty $ pour des opérateurs fuchsiens." Journées équations aux dérivées partielles (1982): 1-9. <http://eudml.org/doc/93082>.
@article{Parenti1982,
author = {Parenti, Cesare},
journal = {Journées équations aux dérivées partielles},
keywords = {propagation of singularities; classical pseudo-differential operators of Fuchsian type; non-involutive multiple characteristics},
language = {fre},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {Propagation des singularités $C^\infty $ pour des opérateurs fuchsiens},
url = {http://eudml.org/doc/93082},
year = {1982},
}
TY - JOUR
AU - Parenti, Cesare
TI - Propagation des singularités $C^\infty $ pour des opérateurs fuchsiens
JO - Journées équations aux dérivées partielles
PY - 1982
PB - Ecole polytechnique
SP - 1
EP - 9
LA - fre
KW - propagation of singularities; classical pseudo-differential operators of Fuchsian type; non-involutive multiple characteristics
UR - http://eudml.org/doc/93082
ER -
References
top- [1] S. Alinhac : Parametrix et propagation des singularités pour un problème de Cauchy à multiplicité variable, Astérisque, 34-37 (1976), 3-26. Zbl0345.35065MR58 #6719
- [2] A. Bove, J. E. Lewis, C. Parenti : Article à paraître.
- [3] N. Hanges : Parametrices and propagation of singularities for operators with non-involutive characteristics, Indiana Univ. Math. J., 28 (1979), 86-97. Zbl0413.35073MR82c:35084
- [4] V. Ya. Ivriǐ : Wave fronts of solutions of certain pseudo differential equations, Trans. Moscow Math. Soc., 1 (1981), 49-86. Zbl0461.35090
- [5] M. Kashiwara, T. Oshima : Systems of differential equations with regular singularities and their boundary value problems, Annals of Math., 106 (1977), 195-200. Zbl0358.35073MR58 #2914
- [6] T. Miwa : Propagation of microanalyticity for solutions of pseudodifferential equations, I, Publ. Res. Inst. Math. Sci., 10 (1975), 521-533. Zbl0312.35063MR58 #29505
- [7] T.Ôaku : A canonical form for a system of microdifferential equations with non-involutory characteristic and branching of singularities, Invent. Math., 65 (3) (1982), 491-525. Zbl0493.35083MR83b:58074
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.