The time-delay operator in scattering theory
Journées équations aux dérivées partielles (1985)
- Issue: 1, page 1-9
- ISSN: 0752-0360
Access Full Article
topHow to cite
topWang, Xue Ping. "L'opérateur de temps-retard dans la théorie de la diffusion." Journées équations aux dérivées partielles (1985): 1-9. <http://eudml.org/doc/93124>.
@article{Wang1985,
author = {Wang, Xue Ping},
journal = {Journées équations aux dérivées partielles},
keywords = {semiclassical approximation of time-delay operators in potential scattering theory; Narnhofer's time-delay operator; Eisenbud-Wigner time- delay; pseudo-differential operators},
language = {fre},
number = {1},
pages = {1-9},
publisher = {Ecole polytechnique},
title = {L'opérateur de temps-retard dans la théorie de la diffusion},
url = {http://eudml.org/doc/93124},
year = {1985},
}
TY - JOUR
AU - Wang, Xue Ping
TI - L'opérateur de temps-retard dans la théorie de la diffusion
JO - Journées équations aux dérivées partielles
PY - 1985
PB - Ecole polytechnique
IS - 1
SP - 1
EP - 9
LA - fre
KW - semiclassical approximation of time-delay operators in potential scattering theory; Narnhofer's time-delay operator; Eisenbud-Wigner time- delay; pseudo-differential operators
UR - http://eudml.org/doc/93124
ER -
References
top- [1] J. Chazarain, Sur le comportement semi-classique du spectre et de l'amplitude de diffusion d'un Hamiltonien, dans " Singularities in Boundary Value Problems ", pp 1-17, ed. H. Garnir ; R. Reidel Publ. 1981. Zbl0486.70020MR82j:35115
- [2] V. Guillemin, Sojourn times and asymptotic properties of scattering matrix, Publ. RIMS Kyoto, 12 (1977), 69-88. Zbl0381.35064MR56 #6759
- [3] B. Helffer & D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal. 53(3) (1983), 246 - 268. Zbl0524.35103MR85i:47052
- [4] A. Jensen, Time-delay in potetial scattering theory, some " geometric " results, Comm. Math. Phys. 82(1981), 435-456. Zbl0483.47031MR83g:81094
- [5] P. Lax & R. Phillips, The time-delay operator and a related trace formula, dans " Topics in Functional Analysis ", pp. 197-215, Acad. Press, 1978. Zbl0463.47006MR80j:47010
- [6] Ph. Martin, Time-delay of quantum scattering processus, Acta Phys. Austriaca Suppl. 23 (1981), 157-208.
- [7] H. Narnhofer, Time-delay and dilation properties in scattering theory, J. Math. Phys., 25(1984), 987-991. Zbl0565.35098MR85d:81159
- [8] D. Robert, Autour de l'approximation semi-classique, Notas de Curso, N° 21, Récife, 1983. Zbl0621.35001
- [9] D. Robert & H. Tamura, Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scatering phase, Comm. P.D.E., 9(10) (1984), 1017-1058. Zbl0561.35021MR86e:35117
- [10] X.P. Wang, Etude semi-classique d'observables quantiques, à paraître. Zbl0597.35028
- [11] X.P. Wang, Continuity of time-delay operators in scattering theory, à paraître.
- [12] X.P. Wang, Time-delay operators in semi-classical limit, I. -Finite range potentials, preprint. Zbl0706.35110
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.