Solutions globales des systèmes de Dirac-Klein-Gordon

Alain Bachelot

Journées équations aux dérivées partielles (1987)

  • page 1-10
  • ISSN: 0752-0360

How to cite

top

Bachelot, Alain. "Solutions globales des systèmes de Dirac-Klein-Gordon." Journées équations aux dérivées partielles (1987): 1-10. <http://eudml.org/doc/93149>.

@article{Bachelot1987,
author = {Bachelot, Alain},
journal = {Journées équations aux dérivées partielles},
keywords = {Dirac system; Cauchy problem; well posed; Lorentz-invariance; pseudoscalar Yukawa model; nuclear forces; Sobolev spaces; scattering operator},
language = {fre},
pages = {1-10},
publisher = {Ecole polytechnique},
title = {Solutions globales des systèmes de Dirac-Klein-Gordon},
url = {http://eudml.org/doc/93149},
year = {1987},
}

TY - JOUR
AU - Bachelot, Alain
TI - Solutions globales des systèmes de Dirac-Klein-Gordon
JO - Journées équations aux dérivées partielles
PY - 1987
PB - Ecole polytechnique
SP - 1
EP - 10
LA - fre
KW - Dirac system; Cauchy problem; well posed; Lorentz-invariance; pseudoscalar Yukawa model; nuclear forces; Sobolev spaces; scattering operator
UR - http://eudml.org/doc/93149
ER -

References

top
  1. [1] A. BACHELOT, V. PETKOV, Existence de l'opérateur de diffusion pour l'équation des ondes avec un potentiel périodique en temps, C.R. Acad. Sci. Paris, t. 303, série I, n° 14, 1986 p. 671-673. Zbl0611.35067MR87k:35195
  2. [2] Y. CHOQUET-BRUHAT, Solutions globales des équations de Maxwell-Dirac-Klein-Gordon (masses nulles), C.R. Acad. Sci. Paris, t. 292, 1981, p. 153-158. Zbl0498.35053MR82f:81037
  3. [3] Y. CHOQUET-BRUHAT, D. CHRISTODOULOU, Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions, Ann. Scient. Ec. Norm. Sup. 4e séri t. 14, 1981, p. 481-500. Zbl0499.35076MR84c:81041
  4. [4] D. CHRISTODOULOU, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure and Appl. Math. vol. 34, 1986, p.267-282. Zbl0612.35090MR87c:35111
  5. [5] B. HANOUZET, J.L. JOLY, Applications bilinéaires compatibles sur certains sous-espaces de type Sobolev, C.R. Acad. Sc. Paris, t. 294, 1982, p. 745-747 et Applications bilinéaires compatibles avec un système hyperbolique, C.R. Acad. Sc. Paris, t. 301, n° 10, 1985, p. 491-494 et article à paraître in Ann. Inst. Henri Poincaré — Analyse non linéaire. Zbl0601.35066MR83h:46050
  6. [6] B. HANOUZET, J.L. JOLY, Explosion pour des problèmes hyperboliques semilinéaires avec second membre non compatible, C.R. Acad. Sc. Paris, t.301, n° 11, 1985, p. 581-584 et Publications d'Analyse Appliquée de l'Université de Bordeaux I, n° 8518. Zbl0601.35073MR87c:35016
  7. [7] A. INOUE, Wave and scattering operators for an evolving system d/dt -iA(t), J. Math. Soc. Japan, 26, n° 4, 1974, p. 608-624. Zbl0285.35062MR50 #10571
  8. [8] S. KLAINERMAN, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure and Appl. Math. 38, 1985, p. 321-332. Zbl0635.35059MR86i:35091
  9. [9] S. KLAINERMAN, Global existence of small amplitude solutions to nonlinear Klein Gordon equations in four space-time dimensions, Comm. Pure and Appl. Math. 38, 1985, p. 631-641. Zbl0597.35100MR87e:35080
  10. [10] S. KLAINERMAN, Proceedings of the International Congress of Mathematicians, Warszawa 1983 et The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math. vol. 23, 1986, p. 293-326. Zbl0599.35105MR87h:35217

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.