Maximal L p regularity for a class of operators with multiple characteristics

Mohammed Tazi Hemida

Journées équations aux dérivées partielles (1988)

  • page 1-4
  • ISSN: 0752-0360

How to cite

top

Hemida, Mohammed Tazi. "Régularité $L^p$ maximale pour une classe d’opérateurs à caractéristiques multiples." Journées équations aux dérivées partielles (1988): 1-4. <http://eudml.org/doc/93173>.

@article{Hemida1988,
author = {Hemida, Mohammed Tazi},
journal = {Journées équations aux dérivées partielles},
keywords = {maximal -regularity; multiple characteristics},
language = {fre},
pages = {1-4},
publisher = {Ecole polytechnique},
title = {Régularité $L^p$ maximale pour une classe d’opérateurs à caractéristiques multiples},
url = {http://eudml.org/doc/93173},
year = {1988},
}

TY - JOUR
AU - Hemida, Mohammed Tazi
TI - Régularité $L^p$ maximale pour une classe d’opérateurs à caractéristiques multiples
JO - Journées équations aux dérivées partielles
PY - 1988
PB - Ecole polytechnique
SP - 1
EP - 4
LA - fre
KW - maximal -regularity; multiple characteristics
UR - http://eudml.org/doc/93173
ER -

References

top
  1. [1] BEALS - GREINERPseudodifferential operators associated to hyperplan bundles Rendiconti del Seminario Matematico, Univesità e Politecnico di Torino, (1982), 7-41. Zbl0574.58027
  2. [2] BOUTET DE MONVELHypoelliptic operators with double characteristics and related pseudodifferential operators. CPAM 27, (1974), 585-639. Zbl0294.35020MR51 #6498
  3. [3] BOUTET DE MONVEL - GRIGIS - HELFFERParametrixes d'opérateurs pseudodifférentiels à caractéristiques multiples. Asterisque 34-35, (1976), 93-121. Zbl0344.32009MR58 #12046
  4. [4] DEBBAJRégularité holdérienne maximale de certains problèmes aux limites elliptiques singuliers. Comm In Partial Differential Equations, 11(8), (1986), 795-850. Zbl0602.35043MR87m:35105
  5. [5] HORMANDERFourier integral operators I Acta Mathematica 127, (1971), 79-183. Zbl0212.46601MR52 #9299
  6. [6] NAGEL - STEINLectures on pseudodifferential operators : regularity theorems and applications to non elliptic problems. Princeton University Press (1979), 1-156. Zbl0415.47025MR82f:47059
  7. [7] METIVIERCours DEA Rennes (1981). 
  8. [8] ROTHSCHILD - STEINHypoelliptic differential operators and nilpotent groups. Acta. Mat, 137, (1977), 248-315. Zbl0346.35030MR55 #9171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.