Global analytic and Gevrey surjectivity of the Mizohata operator D 2 + i x 2 2 k D 1

L. Cattabriga; L. Zanghirati

Journées équations aux dérivées partielles (1989)

  • page 1-4
  • ISSN: 0752-0360

How to cite

top

Cattabriga, L., and Zanghirati, L.. "Global analytic and Gevrey surjectivity of the Mizohata operator $D_2+ix_2^{2k}D_1$." Journées équations aux dérivées partielles (1989): 1-4. <http://eudml.org/doc/93189>.

@article{Cattabriga1989,
author = {Cattabriga, L., Zanghirati, L.},
journal = {Journées équations aux dérivées partielles},
keywords = {Gevrey surjectivity; Mizohata operator},
language = {eng},
pages = {1-4},
publisher = {Ecole polytechnique},
title = {Global analytic and Gevrey surjectivity of the Mizohata operator $D_2+ix_2^\{2k\}D_1$},
url = {http://eudml.org/doc/93189},
year = {1989},
}

TY - JOUR
AU - Cattabriga, L.
AU - Zanghirati, L.
TI - Global analytic and Gevrey surjectivity of the Mizohata operator $D_2+ix_2^{2k}D_1$
JO - Journées équations aux dérivées partielles
PY - 1989
PB - Ecole polytechnique
SP - 1
EP - 4
LA - eng
KW - Gevrey surjectivity; Mizohata operator
UR - http://eudml.org/doc/93189
ER -

References

top
  1. [1] R.W. Braun - R. Meise - D. Vogt. “Applications of the projiective limit functor to convolution and partial differential equations”, Proceeding of the NATO ASW on “Fréchet spaces”, Istanbul August 1988, D. Reidel Publishing Comp., (to appear). Zbl0726.46022
  2. [2] L. Cattabriga. “Solutions in Gevrey spaces of partial differential equations with constant coefficients”, Astérisque 89-90 (1981), 129-151. Zbl0496.35018MR84h:35030
  3. [3] L. Cattabriga. “On the surjectivity of differential polynomials on Gevrey spaces”, Rend. Sem. Mat. Univ. Politec. Torino, Fasc. speciale, Convegno “Linear partial and pseudo-differential operators”, Torino, 30 Sett.-2 Ott. 1982, 41 (1983), 81-89. Zbl0561.35008MR85f:35046
  4. [4] E.De Giorgi. “Solutions analytiques des équations aux dérivées partielles à coefficients constants”, Séminaire Goulaouic-Schwartz 1971-1972, Equations aux dérivées partielles et analyse fonctionnelle, Exp. N. 29, Ecole Polytech. Centre de Math. Paris 1972. Zbl0244.35017
  5. [5] E. De Giorgi - L. Cattabriga. “Una dimostrazone diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti”, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027. Zbl0224.35018MR52 #3702
  6. [6] L. Ehrenpreis. “Lewy's operator and its ramifications”, J. Funct. Analysis 68 (1986), 329-365. Zbl0638.35002MR87j:35018
  7. [7] J. Friberg. “Estimates for partially hypoelliptic differential operators”, Medd. Lund Univ. Mat. Sem. 17 (1963), 1-93. Zbl0139.28403MR28 #349
  8. [8] L. Hörmander. “On the existence of real analytic solutions of partial equations with constant coefficients”, Inventiones Math. 21 (1973), 151-182. Zbl0282.35015MR49 #817
  9. [9] L. Hörmander. “The analysis of linear partial differential operators”, Springer-Verlag, (1983), vol. IV. Zbl0521.35002
  10. [10] T. Kawai, “On the global existence of real analytic solutions of linear differential equations” I and II, J. Math. Soc. Japan 24 (1972), 481-517; 25 (1973), 644-647. Zbl0259.35062
  11. [11] T. Kawai, “On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations”, Publ. RIMS Kyoto University 555 (1986). Zbl0618.35002MR87k:58249
  12. [12] H. Komatsu, “An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual”, J. Fac. Sci. Univ. Tokyo, Sec. IA 26 (1979), 239-254. Zbl0424.46032MR81i:35008
  13. [13] S. Mizohata, «Solutions nulles et solutions non analytiques», J. Math. Kyoto Univ. 1 (1962), 271-302. Zbl0106.29601MR26 #440
  14. [14] L. Rodino, “On linear partial differential operators with multiple characteristics”, Proceedings Conf. on partial Differential Equations, Holzhau (GDR), 1988, Teubner Text zur Mathematik. Zbl0681.35093
  15. [15] G. Zampieri, “An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations”, Boll. Un. Mat. Ital. (6) V B (1986), 361-392. Zbl0624.35011MR88a:35044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.