Evolution of semilinear conormal waves

Antonio Sa Barreto

Journées équations aux dérivées partielles (1991)

  • page 1-18
  • ISSN: 0752-0360

How to cite

top

Sa Barreto, Antonio. "Evolution of semilinear conormal waves." Journées équations aux dérivées partielles (1991): 1-18. <http://eudml.org/doc/93227>.

@article{SaBarreto1991,
author = {Sa Barreto, Antonio},
journal = {Journées équations aux dérivées partielles},
keywords = {cusp singularity; characteristics; second order strictly hyperbolic differential operator; smooth coefficients; conormal singularities; swallowtail singularity; 726},
language = {eng},
pages = {1-18},
publisher = {Ecole polytechnique},
title = {Evolution of semilinear conormal waves},
url = {http://eudml.org/doc/93227},
year = {1991},
}

TY - JOUR
AU - Sa Barreto, Antonio
TI - Evolution of semilinear conormal waves
JO - Journées équations aux dérivées partielles
PY - 1991
PB - Ecole polytechnique
SP - 1
EP - 18
LA - eng
KW - cusp singularity; characteristics; second order strictly hyperbolic differential operator; smooth coefficients; conormal singularities; swallowtail singularity; 726
UR - http://eudml.org/doc/93227
ER -

References

top
  1. [1] V.I. Arnol'd. Wave fronts evolution and equivariant Morse lemma. Comm. Pure Appl. Math. 28 (1976) 557-582. Zbl0343.58003MR55 #9148
  2. [2] V.I. Arnol'd. Classical Mechanics. Springer Verlag GTM vol. 60, 1984. 
  3. [3] M. Beals. Regularity of nonlinear waves associated with a cusp. Preprint. Zbl0794.35004
  4. [4] J-M. Bony. Interaction des singulariteés pour les équations aux derivées partielles non-lineaires. Sem. Goulaouic- Meyer-Schwartz, exp no. 22 (1979-1980). Zbl0449.35006
  5. [5] J-M. DelortConormalite des ondes semilineaires le long des caustiques, Preprint. Zbl0703.35113
  6. [6] G. LebeauProbleme de Cauchy semilineaire en 3 dimensions d'espace. Un resultat de finitude. Jour. Func Anal 78 (1988) 185-196. Zbl0648.35057MR89e:35101
  7. [7] G. LebeauEquations des ondes seminlineaires II. Controle des singularites et caustiques semilineaires. Invent. Math. 95 (1989), 277-323. Zbl0686.35015MR92j:35126b
  8. [8] R. Melrose. Marked lagrangian distributions. In Preparation. 
  9. [9] R. Melrose. Semilinear equations with cusp singularities. Preprint. Zbl0656.35098
  10. [10] R. Melrose. Transformation of boundary value problems. Acta Matematica 147 (1981) 149-236. Zbl0492.58023MR83f:58073
  11. [11] R. Melrose and N. RitterInteractions of progressing waves for semilinear wave equations Ann. of Math. 121 (1985) 187-213. Zbl0575.35063MR86m:35005
  12. [12] R. Melrose and N. Ritter. Interaction of nonlinear progressing waves for semilinear wave equations II. Arkiv For Matematik vol 25 (1987) 91-114. Zbl0653.35058MR89b:35005
  13. [13] R. Melrose and A. Sá Barreto. Non-linear interaction of a cusp and a plane. In Preparation. Zbl0847.35086
  14. [14] R. Melrose, A. Sá Barreto and M. ZworskiSemilinear diffraction of conormal waves. In Preparation. 
  15. [15] A. Sá BarretoOn the Interactions Of Conormal Waves. To appear in the Proceedings of IMA. Zbl0794.35006
  16. [16] A. Sá BarretoSecond microlocal ellipticity and propagation of conormality for semi-linear wave equations. To appear in Journ. Of Funct. Anal. Zbl0746.35021
  17. [17] A. Sá BarretoEvolution of conormal waves with swallowtail singularities. In preparation. 
  18. [18] M. ZworskiPropagation of sub-marked Lagrangian singularities. Inpreparation. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.