Time decay estimates for a perturbed wave equation
Journées équations aux dérivées partielles (1991)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topHow to cite
topBeals, Michael, and Strauss, Walter. "Time decay estimates for a perturbed wave equation." Journées équations aux dérivées partielles (1991): 1-10. <http://eudml.org/doc/93228>.
@article{Beals1991,
author = {Beals, Michael, Strauss, Walter},
journal = {Journées équations aux dérivées partielles},
keywords = {global time estimates},
language = {eng},
pages = {1-10},
publisher = {Ecole polytechnique},
title = {Time decay estimates for a perturbed wave equation},
url = {http://eudml.org/doc/93228},
year = {1991},
}
TY - JOUR
AU - Beals, Michael
AU - Strauss, Walter
TI - Time decay estimates for a perturbed wave equation
JO - Journées équations aux dérivées partielles
PY - 1991
PB - Ecole polytechnique
SP - 1
EP - 10
LA - eng
KW - global time estimates
UR - http://eudml.org/doc/93228
ER -
References
top- [1] A. M. Berthier, Spectral theory and wave operators for the Schrödinger equation, Pitman, Boston, (1982). Zbl0484.35002
- [2] J.-L. Journé, A. Soffer, and C. Sogge, Decay estimates for Schrödinger operators, preprint. Zbl0743.35008
- [3] B. Marshall, w. Strauss, and S. Wainger, Lp - Lq estimates for the Klein-Gordon equation, J. Math. Pures Appl. 59 (1980), 417-440. Zbl0457.47040MR82j:35133
- [4] M. Reed and B. Simon, Methods of Modern Mathematical Physics, V. 3, Academic Press, New York, (1979). Zbl0405.47007MR80m:81085
- [5] W. Strauss, Nonlinear scattering at low energy, J. Funct. Analysis 41 (1981), 110-133. Zbl0466.47006MR83b:47074a
- [6] G. N. Watson, Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, (1963).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.