Characteristic properties of distributions associated with the wave group

Dimitri G. Vassiliev

Journées équations aux dérivées partielles (1992)

  • page 1-14
  • ISSN: 0752-0360

How to cite

top

Vassiliev, Dimitri G.. "Characteristic properties of distributions associated with the wave group." Journées équations aux dérivées partielles (1992): 1-14. <http://eudml.org/doc/93246>.

@article{Vassiliev1992,
author = {Vassiliev, Dimitri G.},
journal = {Journées équations aux dérivées partielles},
keywords = {regularly elliptic boundary conditions; two-term spectral asymptotics},
language = {eng},
pages = {1-14},
publisher = {Ecole polytechnique},
title = {Characteristic properties of distributions associated with the wave group},
url = {http://eudml.org/doc/93246},
year = {1992},
}

TY - JOUR
AU - Vassiliev, Dimitri G.
TI - Characteristic properties of distributions associated with the wave group
JO - Journées équations aux dérivées partielles
PY - 1992
PB - Ecole polytechnique
SP - 1
EP - 14
LA - eng
KW - regularly elliptic boundary conditions; two-term spectral asymptotics
UR - http://eudml.org/doc/93246
ER -

References

top
  1. 1. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968 ; English transl., Springer-Verlag, Berlin and New York, 1972. Zbl0165.10801
  2. 2. J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39-79. Zbl0307.35071MR53 #9307
  3. 3. V. Ya. Ivriľ, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25-34; English transl. in Functional Anal. Appl. 14 (1980), 98-106. Zbl0453.35068
  4. 4. Victor Ivriľ, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary, Lecture Notes in Math., vol. 1100, Springer-Verlag, Berlin and New York, 1984. Zbl0565.35002MR86h:58139
  5. 5. R. Melrose, Weyl's conjecture for manifolds with concave boundary, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 257-273. Zbl0436.58024MR82b:58101
  6. 6. D. G. Vasil'ev, Binomial asymptotics of the spectrum of a boundary value problem, Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 79-81; English transl. in Functional Anal. Appl. 17 (1984), 309-311. Zbl0583.35082
  7. 7. D. G. Vasil'ev, Two-term asymptotics of the spectrum of a boundary value problem under an interior reflection of general form, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 1-13; English transl. in Functional Anal. Appl. 18 (1984), 267-277. Zbl0574.35032
  8. 8. D. G. Vasil'ev, Asymptotics of the spectrum of a boundary value problem, Trudy Moskov. Mat. Obshch. 49 (1986), 167-237; English transl. in Trans. Moscow Math. Soc. (1987), 173-245. Zbl0632.58036MR87k:35192
  9. 9. L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501MR35 #730
  10. 10. Lars Hörmander, The analysis of linear partial differential operators, vol. 1, Springer-Verlag, Berlin and New York, 1983. Zbl0521.35002
  11. 11. M. A. Shubin, Pseudodifferential operators and spectral theory, «Nauka», Moscow, 1980; English transl., Springer-Verlag, Berlin and New York, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.