Solvability and asymptotic behavior of solutions of ordinary differential equations with variable operator coefficients

Vladimir Kozlov; Vladimir Maz'ya

Journées équations aux dérivées partielles (1992)

  • page 1-12
  • ISSN: 0752-0360

How to cite

top

Kozlov, Vladimir, and Maz'ya, Vladimir. "Solvability and asymptotic behavior of solutions of ordinary differential equations with variable operator coefficients." Journées équations aux dérivées partielles (1992): 1-12. <http://eudml.org/doc/93257>.

@article{Kozlov1992,
author = {Kozlov, Vladimir, Maz'ya, Vladimir},
journal = {Journées équations aux dérivées partielles},
keywords = {Hilbert spaces; operator pencil; perturbation; differential equation; Fredholm pencil; existence; uniqueness; estimates; asymptotic properties},
language = {eng},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {Solvability and asymptotic behavior of solutions of ordinary differential equations with variable operator coefficients},
url = {http://eudml.org/doc/93257},
year = {1992},
}

TY - JOUR
AU - Kozlov, Vladimir
AU - Maz'ya, Vladimir
TI - Solvability and asymptotic behavior of solutions of ordinary differential equations with variable operator coefficients
JO - Journées équations aux dérivées partielles
PY - 1992
PB - Ecole polytechnique
SP - 1
EP - 12
LA - eng
KW - Hilbert spaces; operator pencil; perturbation; differential equation; Fredholm pencil; existence; uniqueness; estimates; asymptotic properties
UR - http://eudml.org/doc/93257
ER -

References

top
  1. 1. V.A. Kozlov, V.G. Maz'ya. On the asymptotic behaviour of solutions of ordinary differential equations with operator coefficients I. Linköping University, Sweden, LiTH-MAT-R-91-47, 1991. 
  2. 2. V.A. Kozlov, V.G. Maz'ya. On the asymptotic behaviour of solutions of ordinary differential equations with operator coefficients II. Linköping University, Sweden, LiTH-MAT-R-92-18, 1992. 
  3. 3. M.A. Evgrafov. Structure of solutions of exponential growth for some operator equations, Trudy Mat. Inst. Steklov 60 (1961), 145-180 (Russian). Zbl0117.34502MR25 #252
  4. 4. S. Agmon and L. Nirenberg. Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-239. Zbl0117.10001MR27 #5142
  5. 5. A. Pazy. Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal. 24 (1967), 193-218. Zbl0147.12303MR35 #515
  6. 6. V.G. Maz'ya and B.A. Plamenevskii. On the asymptotic behaviour of solutions of differential equations in Hilbert space, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1080-1133, Math. USSR Izv. 6 (1972), 1067-1116. Zbl0266.34067
  7. 7. B.A. Plamenevskii. On the existence and asymptotics solutions of differential equations with unbounded operator coefficients in a Banach space, Izv. Akad. Nauk SSSR, Ser. Mat. 36 (1972), No.6; English transl. in Math. USSR Izvetija, 6 (1972), No.6. Zbl0277.34059MR53 #13890

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.