estimates for the wave equation and applications
Journées équations aux dérivées partielles (1993)
- Volume: 1993, Issue: 15, page 1-12
- ISSN: 0752-0360
Access Full Article
topHow to cite
topSogge, Christopher D.. "$L^p$ estimates for the wave equation and applications." Journées équations aux dérivées partielles 1993.15 (1993): 1-12. <http://eudml.org/doc/93266>.
@article{Sogge1993,
author = {Sogge, Christopher D.},
journal = {Journées équations aux dérivées partielles},
keywords = {estimates for Fourier integrals; semilinear wave equations; real interpolation; local existence theorems},
language = {eng},
number = {15},
pages = {1-12},
publisher = {Ecole polytechnique},
title = {$L^p$ estimates for the wave equation and applications},
url = {http://eudml.org/doc/93266},
volume = {1993},
year = {1993},
}
TY - JOUR
AU - Sogge, Christopher D.
TI - $L^p$ estimates for the wave equation and applications
JO - Journées équations aux dérivées partielles
PY - 1993
PB - Ecole polytechnique
VL - 1993
IS - 15
SP - 1
EP - 12
LA - eng
KW - estimates for Fourier integrals; semilinear wave equations; real interpolation; local existence theorems
UR - http://eudml.org/doc/93266
ER -
References
top- 1. M. Beals, Lp boundedness of Fourier integrals, Mem. Amer. Math. Soc. 264 (1982). Zbl0508.42020
- 2. M. Beals and M. Bezard, Low regularity local solutions for field equations, preprint. Zbl0852.35098
- 3. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. Zbl0626.42012MR88f:42036
- 4. J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geometric and Funct. Anal. 1 (1991), 69-85. Zbl0756.42014MR92g:42010
- 5. J. Bourgain, A harmonic analysis approach to problems in nonlinear differential equations, preprint. Zbl0822.35116
- 6. M. Christ, Lectures on singular integral operators, C.B.M.S. Lecture Notes, no. 77, American Math. Soc., Providence, RI, 1990. Zbl0745.42008MR92f:42021
- 7. M. Christ and M. Weinstein, Dispersion of low-amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100 (1991), 87-109. Zbl0743.35067MR92h:35203
- 8. D. Grieser, Lp bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries, Thesis, UCLA (1992).
- 9. M.G. Grillakis, Regularity for the wave equation with a critical nonlinearity, Comm. Pure and Appl. Math. 45 (1992), 749-774. Zbl0785.35065MR93e:35073
- 10. J. Harmse, On Lebesgue space estimates for the wave equation, Indiana Math. J. 39 (1990), 229-248. Zbl0683.35008MR91j:35158
- 11. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218. Zbl0164.13201MR58 #29418
- L. Hörmander, Non-linear hyperbolic differential equations, Lund lecture notes, 1988.
- 13. F. John, The ultrahyperbolic equation with 4 independent variables, Duke J. Math. 4 (1938), 300-322. Zbl0019.02404JFM64.0497.04
- 14. J.-L. Journé, A. Soffer and C.D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure and Appl. Math. 44 (1991), 573-604. Zbl0743.35008MR93d:35034
- 15. L. Kapitanski, Weak and yet weaker solutions of semilinear wave equations, Brown Univ. preprint. Zbl0831.35109
- 16. C.E. Kenig, A. Ruiz and C.D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), 329-349. Zbl0644.35012MR88d:35037
- 17. S. Klainerman and M. Machedon, The null condition and global existence for nonlinear waves, Comm. Pure and Appl. Math. (to appear). Zbl0803.35095
- 18. H. Lindblad, A sharp counter example to local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993) (to appear). Zbl0797.35123MR94h:35165
- 19. H. Lindblad and C.D. Sogge, Minimal regularity for local existence of solutions to for semilinear Lorentz-invariant wave equations, in preparation. Zbl0846.35085
- 20. W. Littman, Lp → Lq estimates for singular integrals, Proc. Symp. Pure and Appl. Math., vol. 23, Amer. Math. Soc., 1973, pp. 479-481. Zbl0263.44006MR50 #10909
- 21. G. Mockenhaupt, A. Seeger and C. D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Annals of Math. 136 (1992), 207-218. Zbl0759.42016MR93i:42009
- 22. G. Mockenhaupt, A. Seeger and C.D. Sogge, Local smoothing of Fourier integrals and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), 65-130. Zbl0776.58037MR93h:58150
- 23. J. Peral, Lp estimates for the wave equation, J. Funct. Anal. 36 (1980), 114-145. Zbl0442.35017MR81k:35089
- 24. J. Rauch, The u5-Klein-Gordan equation, Nonlinear PDE's and applications, vol. 53, Pitman Research Notes in Math., pp. 335-364. Zbl0473.35055MR83a:35066
- 25. J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, preprint. Zbl0836.35096
- 26. A. Seeger, C.D. Sogge and E.M. Stein, Regularity properties of Fourier integral operators, Annals of Math 134 (1991), 231-251. Zbl0754.58037MR92g:35252
- 27. H. Smith and C.D. Sogge, Lp regularity for the wave equation with strictly convex obstacles (to appear). Zbl0805.35169
- 28. C.D. Sogge, Uniqueness in Cauchy problems for hyperbolic differential operators, Trans. Amer. Math. Soc. 333 (1992), 821-833. Zbl0763.35012MR92m:35006
- 29. C.D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349-376. Zbl0754.35004MR92i:58192
- 30. C.D. Sogge, Fourier integrals in classical analysis, Cambridge Univ. Press, Cambridge, New York, 1993. Zbl0783.35001MR94c:35178
- 31. E.M. Stein, Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993. Zbl0821.42001MR95c:42002
- 32. W. Strauss, Nonlinear wave equations, C.B.M.S. Lecture Notes, no. 73, American Math. Soc., Providence, RI, 1989. Zbl0714.35003MR91g:35002
- 33. R. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218-235. Zbl0189.40701MR41 #2231
- 34. R. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation, Duke Math. J. 44 (1977), 705-714. Zbl0372.35001MR58 #23577
- 35. M. Struwe, Semilinear wave equations, Bull. Amer. Math. Soc. 26 (1992), 53-85. Zbl0767.35045MR92e:35112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.